
School of Mathematical and Computer Sciences

Heriot-Watt University

Final Year Dissertation

Financial Music

Author:

DANIEL DEMBY

Supervisor:

Prof. DAVID CORNE

June 2, 2008

Declaration:

I, Daniel Demby, confirm that this work submitted for assessment is my own and is

expressed in my own words. Any uses made within it of the works of other authors

in any form eg: ideas, figures, text, tables, programs are properly acknowledged at

any point of their use. A list of the references employed is included.

Signed:

Date:

Abstract

In Douglas Adams’ novel ‘Dirk Gently’s Holistic Detective Agency’, he describes software capa-

ble of generating music from corporate accounts. The music generated was capable of conveying

the state of an account, to the point where a listener was able to make an investment decision.

Over the course of this dissertation, we will design, develop, implement and evaluate two ap-

proaches towards achieving this. We will focus on both conveying the account’s nature, and on

making the audio output as musical as possible. The first approach explored uses an mathemat-

ical approach in which we generate ‘signals’ from the accounts. These signals to appropriate

musical sequences. The second approach uses L-Systems to generate music from these same

signals.

We will discover in the evaluation that both approaches produce audio output which is con-

sidered musical. We will also discover that the L-System approach show’s the highest level of

success when conveying the nature of an account.

Finally, we will go forward to design a novel idea called The Financial Genome, in which we

attempt to use a biologically inspired approach to identify patterns in accounts, find an optimum

genome.

Acknowledgments

David Corne, who presented such a compelling dissertation topic, and agreed to take me on.

Gerard Briscoe, for proof-reading the chapters and explaining many of the intricacies of LaTeX
to me.

David Demby, for analysing the accounts for me and providing an insight into accountancy and
finance that I lacked.

Mike Chantler, for providing useful and constructive feedback.

Finally, the late Douglas Adams, who came up with the original idea of generating music from
accounts.

This document was composed in LATEX and processed using MiKTeX 2.7.

Contents

1 Introduction 1
Motivation and Objectives . 2
Dissertation Outline . 3

2 The Theory 4
Company Accounts Analysis . 4
Music Theory . 5
Music Cognition . 5
The MIDI Standard . 6
First Case Study: Playing the Market . 6
Summary . 7

3 Software Architecture 8
Requirements of the Framework . 8
The Shell and the Core . 9
Languages of Implementation . 9
Modules of the Shell . 11
Modules of the Core . 11
Module Interactions and Data Flow . 11
Platform Requirements . 11
Summary . 12

4 Approach 1: Signal Mapping 14
Notation and Definitions . 14
Problem Discussion . 14
Processor Isolation: A Sequential Approach . 15
Processor Interaction: A Parallel Approach . 16
From Signals to Music . 18
Signal Generation . 20
Generating a Compound Signal . 21
Mapping Signals to Music . 21
Programming the Functions for Signal Generation . 23
Summary . 26

5 Approach 2: L-System Music Generation 27
Definitions . 27
An Introduction to L-Systems . 27
Design . 29
Variation 1: Dynamic Rule Generation . 29
Variation 2: Dynamic Axiom Generation . 29

1

Defining a Grammar . 31
Adding Stacks to the Grammar . 31
Interpreting the Grammar . 32
An Example in Action . 32
Selecting the Rules . 33
Selecting the Number of Iterations . 35
Programming Functions for an L-System . 35
Programming the Axiom Generator . 36
Programming the Axiom Parser . 37
Preliminary Evaluation . 40
Summary . 41

6 Evaluation of the First Two Implementations 42
How Can an Objective Evaluation be made of a Subjective Concept? 42
Human Factors . 43
Preparation of Test Data . 44
Designing an Evaluation Strategy . 44
Results Analysis . 46
Summary and Conclusions . 50

7 Approach 3: The Financial Genome 53
Second Case Study: The Music Genome Project . 53
Notation and Definitions . 54
Background . 54
Defining Genes . 55
Rules for Defining a Gene . 56
Invalid Genes . 57
Gene Expression . 58
Implementation as a Prototype . 58
Gene Encoding . 59
Gene Weightings . 59
Functions of the Prototype . 60
Beyond the Prototype . 61
Summary . 61

8 Conclusions 62
Discoveries and Achievements . 62
Project Evaluation . 62
Future Work . 63
Final Conclusion: Is There a Real-World Application for Financial Music? 66

Appendix I
Appendix A: Test Results . II
Appendix B: Interfaces . VI
Appendix C: Evalutaion Results and Supplementary Graphs IX
Appendix D: Questionnaire . XI
Appendix E: User Guide . XVII
Appendix F: Financial Genome Example . XVIII
Appendix G: Progress Log . XXII

List of Figures

3.1 Use case diagram, demonstrating the relationship between the user and the soft-
ware. 8

3.2 The relationship between the Shell and the Core in the software’s architecture. . 10
3.3 A UML representation of the interaction between modules in Financial Music. . 13

4.1 Mapping of account information to music. Each item of the account is indepen-
dently mapped to a musical sequence. 15

4.2 Mapping with a compound signal to control tempo and key. The compound
signal is derived from the set of individual signals. 16

4.3 Mapping with sequences in parallel. 17
4.4 Showing how a processor can be skinned from a selection of choices. 22
4.5 Attributes of a scale, which can be set to values in order to produce a unique

sound. 22
4.6 Diagram showing how an input signal will result in an output musical sequence

by passing a threshold level. In this instance, the signal results in a scale. 23
4.7 Diagram showing how an input signal will result in an output musical sequence

by passing a threshold level. In this instance, the signal results in an arpeggio. . 23
4.8 Diagram showing how an input signal will result in an output musical sequence

by passing a threshold level. In this instance, the signal results in a broken chord. 23

5.1 A Finite State Machine showing a possible application of replaceable symbols
within the rules of an L-System. 34

5.2 A Finite State Machine showing a more sensible application of replaceable sym-
bols within the rules of an L-System. 35

5.3 A sliding scale to show how as musicality increases, ability to accurately predict
the account’s health decreases. The reverse is also true. 40

5.4 The triangle shows how increasing musicality or an increase in the need for con-
centration makes it more difficult to accurately predict the account. 41

6.1 This word cloud shows how frequently some buzzwords occur in financial articles.
The larger the font size, the greater the word’s frequency. 43

6.2 A diagram showing how the evaluation process is organised. 44
6.3 A graph showing the average amount that testers agreed with the expert’s de-

cision whether to invest in an account, not invest in an account or to remain
undecided. (note that ‘strings’ and ‘piano’ are L-System generated sequences) . . 46

6.4 A graph showing how many times testers selected buzzwords for each account in
the Signal Mapping Sequential output. A star designates that this option was
selected by the expert. 47

6.5 A graph showing how many times testers selected buzzwords for each account
in the Signal Mapping Parallel output. A star designates that this option was
selected by the expert. 48

3

6.6 A graph showing how many times testers selected buzzwords for each account in
the L-System Strings output. A star designates that this option was selected by
the expert. 49

6.7 A graph showing how many times testers selected buzzwords for each account in
the L-System Strings output. A star designates that this option was selected by
the expert. 50

6.8 A graph showing the average number of listens needed for each output type.
(note that ‘strings’ and ‘piano’ are L-System generated sequences) 51

6.9 A graph showing the correlation between the length of a musical sequence (in
seconds) and the average number of listens that the tester needed. 52

6.10 A graph showing the average spread of the musicality ratings given to each output
type. 52

7.1 Example generated from a simple genome. The genes represent both the features
of an account, and also a corresponding musical feature. 55

8.1 Sheet 1 of the results. III
8.2 Sheet 2 of the results. IV
8.3 Sheet 3 of the results. V
8.4 Importing CSV files into the Java application. VII
8.5 Flow of account data from Google Finance to the Java applet. VIII
8.6 A graph showing how many times on average testers listened to each output

sequence. IX
8.7 A graph showing the average musicality score between 1 and 5 that testers gave

each output sequence. X
8.8 Page 1 of the expert’s questionnaire. XII
8.9 Page 2 of the expert’s questionnaire. XIII
8.10 Page 3 of the expert’s questionnaire. Future pages continue in the same fashion. XIV
8.11 Page 1 of the tester’s questionnaire. XV
8.12 Page 2 of the tester’s questionnaire. Future pages continue in the same fashion. . XVI

i

Chapter 1

Introduction

“By the time you’ve sorted out a complicated idea into little steps that even a stupid

machine can deal with, you’ve certainly learned something about it yourself.”

– Douglas Adams

In Douglas Adams’ book Dirk Gently’s Holistic Detection Agency, a talented software

developer named Richard Macduff develops a spreadsheet programme named Anthem with a

unique feature; It can turn account data into music.

The book was written in a year when the Apple Macintosh Plus was considered state-

of-the-art technology, and Douglas Adams was clearly captivated by the potential of what

kinds of programs could be created. Would the computer limit the bounds of a programmer’s

imagination, or allow its programmer to realise ideas that appear seemingly impossible?

Nowadays, Digital on-the-fly music generation is becoming increasingly popular for many

different applications, so perhaps Adams’ idea doesn’t seem so far-fetched anymore. In the

entertainment industry, games such as Electroplankton allow the dynamic generation of music

based on the actions of fictional organisms.1 Conversely, some games work the other way round,

generating levels from music. Audiosurf is one such example, generating racing tracks from the

user’s MP3 collection.2

However, to my knowledge, no one has attempted to implement Adams’ idea. . . until now.
1http://electroplankton.nintendods.com
2http://www.audio-surf.com

1

Motivation and Objectives

In theoretical computer science (computability theory), we talk about a problem having a certain

level of complexity. In other words, some problems can be solved by a computer, some can’t,

and for some we just don’t know. Whilst this concept doesn’t directly apply to this dissertation

topic (we’re not looking at directly solving a mathematical problem per se), it may make us

wonder about solving a problem with a computer where the end result is dependant on human

opinion.3

This is one of the fundamental challenges posed by this project; Can we solve a problem

(generating music from accounts) whereby our success measure (that the music represents the

account’s nature) is dependant on human subjectivity?

The analysis of a company’s account by an expert (such as an accountant) is a logical

process, and one that may take some considerable skill. Therefore, an account given to any

number of experts to analyse will almost always conclude with a unanimous opinion as to the

account’s condition.

Music is different. When a piece of music is played to a group of people, there often will not

be a consensus of opinion as to the meaning of a piece of music. This in its self provides the

challenge of taking something of an objective perception (raw account data), and presenting its

meaning using something of a subjective perception (music).

An equally fundamental challenge that we will encounter is how to take two disparate

concepts with seemingly little in common (accounts and music), and then link them together

with tangible ideas which can be implemented and evaluated.

From these challenges, the ultimate aim of this project (this project’s ‘holy grail’) is to

produce note sequences from accounts which both convey the state of the account and also

sound like well structured pieces of music. Along the way, we will hope to learn some

interesting and surprising things from the issues we encounter.
3Donald E. Knuth published a surreal paper entitled “The Compexity of Songs” in 1984, implying that songs

had complexity levels similar to those of problems in the computability theory. http://www.cs.utexas.edu/

arvindn/misc/knuth_song_complexity.pdf

2

Dissertation Outline

The structure of this dissertation follows a natural flow from one idea to another. Where

appropriate, we discuss the origin, design and implementation of a single idea in the same

chapter.

In Chapter 2, we will begin by looking at the theory underpinning the project. What is

a financial statement? What are the fundamentals of music cognition, and why are they so

important in this dissertation?

With Chapter 3, we will look the design and implementation of a central software architec-

ture capable of reading accounts, and playing music. We will also look at how implementations

of ideas discussed in this project will connect to this crucial framework.

In Chapter 4 and Chapter 5, we will consider in detail two approaches to generating

music from accounts. The first, Signal Mapping, takes a mathematical approach. The second,

L-System Music Generation, comes from a Biologically-Inspired direction. Both of these

approaches will be followed through from conception, to design and finally to an implementation,

using the architecture discussed in the second chapter.

In Chapter 6, we will evaluate these two approaches to determine how successful they

have been. The evaluation will use human testers, and the evaluation technique will especially

consider the subjective nature of music interpretation. The results of the evaluation will be

carefully analysed, and some interesting conclusions will be drawn.

In Chapter 7, we will propose a more ambitious approach called The Financial Genome.

This idea presents a method by which unique features of an account can be indentified through

a combination of supervised machine learning and evolutionary algorithms. We will see how the

approach used for evaluating the first two implementations naturally leads to this approach.

Finally, in Chapter 8, we will conclude and look at avenues in which the project could

potentially be expanded on beyond its current scope in the future. We will look at questions

raised during the implementation process, and evaluate the project as a whole.

3

Chapter 2

The Theory

In this chapter, we will look at some of the theory underpinning this project. We will discover

how company accounts are formed, and we will look at how music cognition relates to how

people perceive music.

Company Accounts Analysis

IA company’s account consists of three main statements. They are the Balance Sheet, the

Income Statement and the Cash Flow Statement.1

The balance sheet gives an impression of a company’s situation at a specific point in time.

If we compare two balance sheets that are a year apart, we can determine useful details about

the company’s performance over the year, and the current direction that it is heading. Here is

an example of what a company’s balance sheet looks like (amounts are given in millions of US

Dollars):

Current Assets Total Assets Current Liabilities Total Liabilities Total Equity
2006 4076.71 9251.8 3150.2 8401.05 850.13
2007 3766.27 8342.6 5912.8 7821.86 520.74

Of the remaining two statements, The profit and loss statement records how the com-

pany’s profit and losses were reached over the course of a year, and the cash flow statement

shows movements in cash and cash equivalents (assets). As we are going to be using snapshots

of a company’s state at points in time, we will keep our focus on the balance sheet as the source

for deriving music.
1http://www.flexinvest.co.uk/secrets.htm

4

Music Theory

Music Theory is the field of study which explains the mechanics of music, and there are some

specific ideas that we will need to be very familiar with in order to develop ideas for Financial

Music.

Melody

A melody is a successive sequence of notes. If the sequence is well structured within a scale, it
will sound musical and pleasant to the ear.

Key

A key has a signature (major or minor) and a tonic (the root note).

Octave

An octave is a distance of twelve successive notes between two successive musical pitches.

Scales

A scale is a sequence of notes within a key. For example, a major scale is given as the following
notes in an octave: [1, 3, 5, 6, 8, 10, 12].

Chords

Several notes played concurrently within the same key. Chords add depth to music when
complementing a melody.

Clashing Notes

Two or more notes played concurrently, of which at least two are in different keys. The sound
is discordant.

Music Cognition

Music cognition is a field of study which concerns its self with how the human mind perceives

music. This is a crucial area to understand before beginning the design process, as we need to

know what kind of music to generate to create a certain impression in the listener.

Music cognition consists of several sub-topics, and in this project, we are particularly con-

cerned with the topic of music perception.

Music perception is the process by which the past experience of a listener processes sounds

in to music.2 Musical elements that the listener’s brain is capable of perceiving include pitch,
2Note that as the experience of the listener will determine the impression given by a piece of music, it may

5

rhythm and tonality.

Tonality is an important musical element to consider, as it can convey emotion, triggering

different areas of the brain depending on the emotion being conveyed. This is a feature that

we can apply in designing Financial Music, as we can use tonality to convey the nature of an

account in this way.

The MIDI Standard

MIDI is an acronym for Musical Instrument Digital Interface. Developed in 1983, it is

a versatile protocol for communicating musical sequences and instrumentation. MIDI data

consists of a number of channels, which contain lists of integer values to represent notes.

Channel contents can be played (or transmitted) concurrently, resulting in music.

The most commonly used implementation of MIDI is known as Genral MIDI, and it is this

version that we will be utilising. MIDI is a good choice for representing music in this project,

as we can easily write algorithms to generate the sequences of integers needed to play music

using this standard. MIDI is also very well supported, and class libraries are available for many

programming languages which allow the playing of MIDI sequences with ease.

First Case Study: Playing the Market

An experimental music project named Emerald Suspension3 produced an album titled “Playing

the Market”, which uses patterns derived from stock market movements to inspire interesting

music, which was then further arranged by the musicians. A soundbite from their website

declares the following:

“Conceptual audio arrangements by Emerald Suspension are structured based on

patterns created by the stock market, economic indicators, algorithms, and other

data sources.”

The Playing the Market project differs somewhat from Financial Music in that Emerald Sus-

pension are using movements in the stock market as a template to produce music for artistic

be that a listener’s cultural musical background may effect how well we can convey an account’s nature to them
through the music. This concern is beyond the scope of this project, and is further discussed in the Further Work
section in the final chapter.

3The homepage of Emerald Suspension can be found at: http://www.emeraldsuspension.com

6

reasons. The data they used to generate the music was specifically chosen because it resulted

in good music. The music produced was then refined by the musicians to a high standard.

In Financial Music, we will be using company accounts to generate music for any account. As

there will be no artistic selection of musical output, we will need to develop a way of generating

music for any given account in real time. There will also be no refining of the output; the music

produced must stand on its own merits.

We can draw inspiration from Emerald Suspension’s project. Their album demonstrates that

there are distinct patterns in the financial world, which can be used to generate music. They

also demonstrate that the music generated from these patterns can be perceived by listeners to

have a meaning which represents the original patterns.

Summary

So far, we have seen how a company’s accounts are represented. We have looked at issues of

music cognition, and seen how these issues will play a part in our approach towards a design.

With a basic understanding of the issues of the financial statement and music cognition, we

are now in a position to think about drawing connections between these two eclectic concepts.

But, before we do this, we need to design and implement an appropriate software architecture,

and it is this that we will look at in the next chapter.

7

Chapter 3

Software Architecture

In this chapter, we will consider the general requirements of a program which will turn

accounts into music. At this stage we do not know the specifics of how this will be achieved,

therefore the architecture needs to be as versatile as possible.

We will see how we can split the software into two distinct sections. One will handles the

input and output operations. the other will do the actual processing to produce music from

accounts.

Additionally, the architecture will support a “plug-in” framework, allowing many different

implementations to be attached with ease.

Figure 3.1: Use case diagram, demonstrating the relationship between the user and the software.

Requirements of the Framework

The framework must meet the following requirements:

1. Input:

8

(a) Ability to import accounts from a standard format.

(b) Simplicity to add additional methods of importing accounts.

2. Output:

(a) Output in a common music format.

(b) Ability to play music.

3. Easy addition of core modules for different methods of generating music from accounts.

4. Versatile framework to allow for high levels of experimentation during development.

The Shell and the Core

Recall that we mentioned that parts of the software can will fall into two distinct categories. We

will term these categories the Shell and the Core. The Shell deals with input and output

(I/O) operations such as reading in accounts (input), dealing with file operations (input and

output) and playing the music (output).

The Core is where the process of turning accounts into music takes place, and therefore

performs the processing.

Looking at the software in this way is essential, as we do not wish to be concerned with

issues of input and output (worrying about where the data is coming from or going to) while

we are designing processing strategies. Therefore, we should set things up so that the Core

doesn’t need to be concerned with where the account data is coming from, or what to do with

the music that is produced (figure 3.2).

Languages of Implementation

Given the differing natures of the Shell and the Core, it is necessary to carefully select a language

of implementation that will best suit each task.

The language chosen for implementation of the Shell is Java. Java is a popular high-level

programming language. It also has the advantage of being cross-platform, and web capable.

Java is a suitable language for the tasks the Shell will have to perform, as it has a good

selection of class libraries at its disposal for dealing with all the I/O operations that will be

required by this project. It has libraries for reading and parsing files. It also has excellent MIDI

capabilities.

9

Figure 3.2: The relationship between the Shell and the Core in the software’s architecture.

The Core is concerned purely with mathematical and logical operations which will turn

accounts into music, and therefore requires a language which has a syntax oriented towards this

end. A functional programming language is a good choice for this, and Python was chosen for

this purpose. Python is a high level dynamically typed language, with support for lists, sets and

tuples. It supports a functional programming paradigm, inspired by languages such as SML

and Haskell. As we will be presenting designs which will be expressed formally, this paradigm

will allow focus on the actual processes involved in music generation.

Taking a functional programming approach to writing the core moudules is useful, as it

allows us to abstract a problem down to a state where each element of a problem has its own

function. This in turn allows the sharing of functions across problems which share many of the

same elements.

It also allows functions to be tested individually as they are written. This way, debugging

the program is a simpler process; If the integrity of the modules can be verified, then the

interactions between modules can be studied in isolation.

(It should be noted however, that the functions developed on the coming pages often display

side-effects such as displaying text on screen or accessing a global variable, therefore some may

not consider the approach truly functional)

As a final point, we need the language used for the core to be able to communicate trans-

parently with the shell. To this end, the core is really implemented in Jython, which is an

10

implementation of the Python language using the Java Virtual Machine.1

Modules of the Shell

Recall that modules in the shell are responsible mainly for I/O operations, and will be imple-

mented in Java. There are three main classes involved in this:

• AccountReader.class – Reads in the accounts from source files.

• PlayMusic.class – Plays music when given a 2 dimensional integer array of MIDI values.

• MusicReader.class – Looks for a CSV file with MIDI values and pipes it to PlayMusic.class.

Modules of the Core

Core modules deal with the actual processing. They are as follows:

• Shared.py – Contains functions shared across modules in the Core.

• Settings.py – Contains global settings in one location, for easy access.

• Mapping.py – Contains function for the Signal Mapping implementation (Chapter 4).

• LSS.py – Contains function for the L-System Music Generation implementation (Chapter
5).

• Linden.py – Contains functions to implement a generic L-System (also Chapter 5).

• Genome.py – Contains functions for the Financial Genome approach (Chapter 7).

Module Interactions and Data Flow

The interactions between modules can be observed in figure 3.3.

Platform Requirements

A system running Financial Music will need to meet the following minimum requirements:

1. Hardware

(a) MIDI Capabilities
1The Jython website can be found at: http://www.jython.org

11

2. Software

(a) Java 1.6.0

(b) Jython 2.2.1

Summary

In this chapter, we have designed and constructed a software architecture to support Financial

Music. With a Shell (implemented in Java) and a Core (Implemented in Jython), it will be

capable of reading in accounts from an external source, and of playing music using the MIDI

standard.

As we develop Python code in the future chapters, we will see an evolution of the Core.

However, the Java code of the Shell will remain unchanged, and unaffected by development in

the Core.

With a framework in place, we are now ready to begin developing approaches to turning ac-

counts into music, and the next couple of chapters will explore two approaches towards achieving

this.

12

Figure 3.3: A UML representation of the interaction between modules in Financial Music.

13

Chapter 4

Approach 1: Signal Mapping

The first approach we will develop is an idea called Signal Mapping. Accounts have attributes,

and when we look at the accounts for two subsequent years, we can observe changes in these

attributes. We will see that from these changes, we can derive signals, which can be mapped to

appropriate musical constructs. These constructs can be arranged together to form music. To

do this, we will be working with the account balance sheet.

Notation and Definitions

{ . . . } A set of items
Sequence An ordered set which can contain repeating elements
List Another name for a Sequence
〈. . .〉 A sequence of items
Musical sequence: A finite sequence of notes.
Set of musical sequences: Multiple musical sequences whose feel is governed by the set of

musical attributes.
Musical attribute: A static value which pre-determines the feel of a musical sequence.

For example: tempo, time signature or key signature.
Set of musical attributes: Multiple non-contradicting musical attributes.
Musical movement: The set of musical sequences as governed by the set of musical

attributes (i.e. the complete music generated by the accounts).

Problem Discussion

Recall that an account’s balance sheet consists of five attributes. Recall also that to assess the

health of a company, we can compare the balance sheets between two subsequent years.

Now consider the diagram given in figure 4.1. We can connect two parameters together to

produce a unique signal. This signal can then be routed to a processor, which converts it into

14

a musical sequence. Continuing onwards by piping the output signals of multiple processors

produces a complete movement of music. By tweaking and fine tuning the settings of these

processors, we can harness the sound so that it represents the account’s data.

Figure 4.1: Mapping of account information to music. Each item of the account is independently
mapped to a musical sequence.

Essentially, we are mapping the difference between two parameters to a musical sequence or mu-

sical attribute. The processors are ‘black boxes’, and the overall picture is only concerned with

the signals going in and out of the processors. In other words, each processor will correspond

to a function in the program.

Looking inside one of these processors, there would be an algorithm to take the account

values and turn them into a suitable musical sequence. The processors will have ‘dials’ which

when modified change variables within the algorithm. It is these settings that we will tweak to

fine tune the system, so that it produces the musical output we are looking for.

Processor Isolation: A Sequential Approach

The most crucial issue we are concerned with is that the overall sound produced must reflect the

overall state of the accounts. Although we are mapping individual account details to individual

15

musical elements, we have to ensure that the overall feel of the sound fits the overall state of

the accounts.

The first approach we will try is to have each signal routed to an isolated processor. This

processor generates a musical sequence. These sequences are played sequentially, one after the

other. The result is a musical sequence in the form of a melody, which gives an impression of

the account.

As some changes are more significant than other changes (bigger change in values of account

attribute between years), we order the signals in terms of magnitude. This way, the individual

musical sequences are joined up in order of importance.

We also need a way of deriving musical attributes which affect the whole musical sequence.

To do this, we calculate a compound signal which represents the overall signal spread.

Figure 4.2: Mapping with a compound signal to control tempo and key. The compound signal
is derived from the set of individual signals.

Processor Interaction: A Parallel Approach

With the ability to play several musical sequences in sequence, we can modify this approach

to produce music where the sequences play concurrently (figure 4.3). Taking this approach has

16

the advantage of creating a completely different sound to the sequential approach, which we

can compare with later.

Figure 4.3: Mapping with sequences in parallel.

However doing this presents us with a new problem. As each of the note sequences generated by

the processors are in their own key, if we attempt to play them together, there will note clashes

and general discordance of notes. Seeing as we are aiming to generate music, this situation is

clearly undesirable, and so we need a strategy to account for this. As an example, let’s take the

following two arbitrary note sequences:

Seq1 = 〈C#, F,A#〉
Seq2 = 〈E#, F#, C〉

Some of these notes will clash if the sequences are played in parallel (for example, the 2nd

item in each list). Additionally, if we are to adhere to a proper musical structure, we need an

overall key to which all sequences should reside in.

To solve this problem, we invent the concept of a keymap. A keymap is a list of allowed

notes, and will usually specify a scale of notes in the overall key. For example, consider the

17

scale of C major:

KeyMap = 〈C,D,E, F,G,A,B〉

We map the notes of Seq1 and Seq2 to the notes in KeyMap via the following algorithm:

• For each Note in Seq:

• If Note not in KeyMap then:

• If Note - 1 in KeyMap then:

• Note = Note - 1

• else:

• Repeat until Note in KeyMap:

• Note = Note + 1

Running the algorithm would re-map Seq1 and Seq2 as follows:

Seq1 = 〈C,F,A〉
Seq2 = 〈E,F,C〉

From Signals to Music

So far, we have looked at the overall picture; individual elements of an account are mapped to

individual elements of music. The next step is to discuss the activity within the processors, so

that an individual account attribute is mapped to a representative musical element.

Each processor will receive two values; one from the same attribute in each of the two

account sheets. The output musical sequence could be attributed to a member of a set of pre-

set sequences. This musical sequence can then be ‘stretched’ or ‘squashed’ according to the

spread of the values from the accounts, and its starting note may also be set independently

of the default. For mapping account data to musical attributes, output may be as simple as

a single value (such as a tempo). For example, let S be the set of types of musical sequences

given by:

18

S → {scale ascend, scale descend, broken chord ascend,
broken chord descend, arpeggio ascend, arpeggio descend}

Each of these musical sequences has an attribute associated with it, which will determine how

far the spread is between the start and end note. The sound of the sequence will depend on

the musical attribute generated for the final movement (a minor key signature will mean that

scale ascend will be in a minor key, as will all members of S).

If we take an arbitrary account, we may end up with a musical output as described below.

Let M be the full musical movement (consisting of the set of musical sequences and the set

of musical attributes):

M → {I, A}

Let us take a set I to be the set of musical sequences for four fields in the account sheet:

I → {I1, I2, I3, I4}

Let start (the starting note) and spread (the amount of stretching) be attributes of I. Let the

members of I in our arbitrary example be defined as follows:

I1 = scale ascend(root = A, tonic = major)
I2 = scale ascend(root = C, tonic = major)
I3 = arpeggio descend(root = A, tonic = minor)
I4 = broken chord descend(root = F, tonic = minor)

Let A be the set of musical attributes for M :

A→ {Atempo, Akey signature}

Let the members of A be defined as follows:

Atempo = 100bpm
Akey signature = Bminor

The above representation would define a musical movement consisting of four instruments. Two

of these instruments are playing ascending scales (beginning at A and C respectively, and the

19

second jumping two tones each beat of the bar). The third will play a descending arpeggio

beginning on A, and the fourth will play a descending scale beginning with F. As the key

signature is defined as B minor, the notes of the scales and arpeggios will correspond to the

notes in this scale. The speed this movement will be played at is 100 beats per minute.

Signal Generation

At this stage, we must step back and consider the important issue of signal generation. How

exactly can we generate a signal from account attributes? To do this, we first need to define

what a signal is, in the context of Financial Music.

Definition: A signal generated for an account attribute is a ratio of the attributes between
two years with respect to direction of change.

It is easier to understand what is meant by the above definition through the use of an example.

Consider the following account:

Current Assets Total Assets Current Liabilities Total Liabilities Total Equity
Year 1 4546723 11716362 3551852 8345658 3370704
Year 2 3769524 10607753 3200228 7403901 3203852

A ratio for an account attribute i is derived as follows:

S =
year1i
year2i

In the case of the example account, we would generate a list of ratios, which would appear as

the following list:

〈1.2061796131288725, 1.1045093150264718, 1.1098746714296606, 1.1271974057999965,
1.0520785604328788〉

The signals can be interpreted as follows:

S<1⇒ decreasing
S>1⇒ increasing
S = 1⇒ unchanged

20

At this point, there is a serious issue that needs to be addressed. In forming the ratio by dividing

the account attribute from the first year by the same attribute from the second year, we have

made the assumption that an increase between years is always desirable.

This is not always the case, and we need to look at which attributes this applies to. For

these attributes, an increase in liabilities over the course of a year is considered bad, and we

should adjust the ratios of current liabilities and total liabilities to reflect this. This can be

done by defining a list as follows:

R = 〈false, false, true, true, true〉

If we using this list as we are generate the ratios, if the attribute’s position in R is true, then

we reverse the ratio such that for attribute i:

Ri = false⇒ Si =
year1i
year2i

, Ri = true⇒ Si =
year2i
year1i

Doing this now results in a correct list of ratios (the altered values are underlined):

〈1.2061796131288725, 1.1045093150264718, 0.90100263186641782, 0.88715605168579881,
1.0520785604328788〉

These ratios are the representation of our signals, and will be referred to by the term ‘signals’

from this point onwards.

Generating a Compound Signal

In order to set a tempo and initial key, we need to generate a signal which represents the overall

state of the account. This is the compound signal, and is generated by taking an average of the

five signals generated from the account attributes. With a set of signals at our disposal, we can

now map these to musical sequences.

Mapping Signals to Music

In this Signal Mapping approach, we have formulated the idea of ‘processors’ which turn a

signal into a music sequence. But, how is this done?

21

In professional music sequencing software, a series of effects may be added to each channel to

process the sound before it’s heard. These effect boxes process the sound as it travels through.

These processors are in effect empty boxes which can be ‘skinned’ with a chosen algorithm. The

algorithmic skins are stored as entities separate to the processor (figure: 4.4).

Figure 4.4: Showing how a processor can be skinned from a selection of choices.

The skins themselves have a number of field values which can be set to make the processor’s

sound differ from other processors with the same skin (figure: 4.5).

Figure 4.5: Attributes of a scale, which can be set to values in order to produce a unique sound.

This modular approach allows for each processor to choose its skin based on the nature of the

input signal. For simplicitys sake, we will allow each processor to have only one skin applied to

it. The processors work by having the signals ‘trigger’ musical sequences by passing threshold

levels. To understand this concept, consider the following proposition for a signal S which

produces musical sequence M :

22

S ∈ R+

S<0.15⇒M = Scale
S<0.3⇒M = Arpeggio
S ≥ 0.3⇒M = BrokenChord

Therefore, if we have an input signal strength of 0.14, we get a scale returned, as this signal

strength is below the threshold for a scale (figure 4.6).

Figure 4.6: Diagram showing how an input signal will result in an output musical sequence by
passing a threshold level. In this instance, the signal results in a scale.

If we have a signal strength of 0.25, this is enough to exceed the threshold for a scale, and

therefore results in an arpeggio (figure 4.7).

Figure 4.7: Diagram showing how an input signal will result in an output musical sequence by
passing a threshold level. In this instance, the signal results in an arpeggio.

If the signal strength exceeds 0.3 threshold, we get a broken chord returned (figure 4.8).

Figure 4.8: Diagram showing how an input signal will result in an output musical sequence by
passing a threshold level. In this instance, the signal results in a broken chord.

Programming the Functions for Signal Generation

The following functions make up the Signal Mapping implementation:

23

prepareAccounts(): Function to prepare the accounts and return a list of pairs.

generateSignals(accounts): This function generates a list of signals from two accounts.
The accounts are expected to be inputted as a list of pairs.

orderSignals(signals, referenceSignal): Function to order the signals from most
relevant to least relevant.

signalProcessorTempo(signal): Tempo signal processor.

getOverallKey(signal): Derives a key signature from a signal.

signalProcessorKey(signal, referenceSignal): Key signal processor. Chooses the key
based on the signal. As there are 12 notes in an octive (including accidentals), our output
value will be between 0 and 11.

signalCombinator(signals): This combines a set of signals into one.

signalProcessorSequence(signal, referenceSignal, signalPriority): Produces a
sequence of notes from a signal.

getStartingNote(signalVariance, cutOff, signalPriority): Function to choose a
start note within a max and min bounds.

getStartingOctave(signalPriority): Derives a starting octave from a signal.

signalProcessorScale(signal, signalVariance, signalPriority, referenceSignal
): Produces a scale from a signal.

signalProcessorArpeggio(signal, signalVariance, signalPriority,
referenceSignal): Produces an arpeggio from a signal.

signalProcessorBrokenChord(signal, signalVariance, signalPriority,
referenceSignal): Produces a broken chord from a signal.

createFullScale(octaveTemplate): Function to produce a complete scale for 12 octives

shiftKey(octaveTemplate, keyShift): Function to shift the key.

getKeyMap(octaveTemplate, keyShift): Function to produce a map of notes for a given
key.

mapToKey(musicalSequence, keyMap): Function to force a note sequence to map its self to
a keyMap.

There is a main() function which is invoked when the program is first run:

24

main(argv): The main(argv) function which is invoked when the program is run. It reads
the accounts, and then outputs the music.

By looking at the main() function, we can get a good idea of the stages that the program goes

through to derive music. The pseudocode for this is given below:

• main(argv):

• Read in accounts

• Generate signals from accounts

• Generate referenceSignal from signals

• Calculate tempo from referenceSignal

• Calculate key from referenceSignal

• Re-order signals according to how far the deviate from
referenceSignal

• Initialise musicalSequences to empty list

• For each signal in signals:

• Produce a musicalSequence from signal

• Append musicalSequence to musicalSequences

• If parallel approach:

• derive overallKey from referenceSignal

• for each musicalSequence in musicalSequences:

• Shift musicalSequence into overallKey

• outputMusic = musicalSequences

• Else if sequential approach:

• Initialise outputMusic

• for each musicalSequence in musicalSequences:

• Append musicalSequence to musicalSequences

• Send outputMusic to be played

The above algorithm shows that the main() function dervies signals from the attributes. It

then derives a reference signal (which is the same as the compound signal described earlier).

This reference signal is used to calculate the tempo and overall key signature.

Next, we iterate through each signal and produce a musical sequence. Each musical sequence

is appended to a list. We then consider whether we are using the sequential or parallel approach.

If we are using the parallel approach, we iterate through each music sequence and shift them

into the overall key. If we are using the sequential approach, we keep each musical sequence in

25

its current key, but we append them to each other so they play in sequence. Finally, we play

(or output) the music sequence or sequences.

Summary

In this chapter we have developed a primary approach towards generating music from accounts.

We have seen how we can derive signals from account attribute, and match these to musical

sequences.

In the next chapter, we will attempt another approach to music generation by using biological

inspiration.

26

Chapter 5

Approach 2: L-System Music Generation

One of the biggest challenges in producing music from accounts is simply that we’re using a

small amount of simple data (amounts of money) to derive music, which is far more complex

(sequences of notes, cords, etc). To meet this challenge, an approach is needed in which we can

encourage music to “emerge” from something as simple as a company’s balance sheet. To this

end, we will turn to the field of Biologically-Inspired Computing.

Biologically inspired techniques tend to be good for solving complex problems with no

obvious solution. Applying these techniques often leads to emergent properties, which is exactly

what we’re looking for. One such technique is that of the L-System.

In this chapter, we will look at using L-Systems to generate music from accounts. Two pos-

sible variations to achieving this will be looked at, with the most promising approach chosen for

implementation and evaluation. With a working implementation, we will perform a preliminary

evaluation, and then experiment with the rule generation.

Definitions

L-System: A Biologically-Inspired parallel re-writing system.
Grammar: Set of symbols unique to a specific L-System.
Rules: Part of an L-System. Specifies re-writing strategies.
Axiom: A string of characters on which an L-System operates.

An Introduction to L-Systems

L-Systems (also known as Lindenmayer Systems) were developed in 1968 by Aristid Linden-

mayer. Lindenmayer was a biologist, who was trying to understand the behaviour of plant cells.

27

During the process of his research, he developed the idea of “an axiomatic theory of biological

development”1, which became known as the L-System. Nowadays, L-Systems have applications

ranging from modeling the physical structure of plants to computer graphics. They can also be

used to generate music.

L-Systems allow the re-writing of a string of characters based on a set of rules. An L-System

has a grammar, rules and a start axiom. An L-System G is formally defined as follows:

G = {V, S, ω, P}

V is a set of variables (replaceable symbols), and S is a set of constants (non-replaceable

symbols). P are the re-writing rules of the L-System, and ω is the start axiom. Rules given

in P will be applied to ω each time the L-System is run.

A common example of an L-System in action is one which generates the Fibonacci Se-

quence. The Fibonacci Sequence is a sequence of numbers with very special properties. The

first Fibonacci number is always 0, and the second Fibonacci number is always 1. After that,

each subsequent number is defined as the sum of its two predecessors. Below is the definition

of this L-System:

V = {A,B}
S = {}
ω = 〈A〉
P = {(A→ B), (B → AB)}

Each time we run this L-System, we work through all the symbols in ω, turning each ‘A’

into a ‘B’, and each ‘B’ into an ‘AB’. If we count the length of the axiom ω, we get the next

number in the Fibonacci Sequence:

start: A (axiom length = 1)
1st run : B (axiom length = 1)
2nd run : AB (axiom length = 2)
3rd run : BAB (axiom length = 3)
4th run : ABBAB (axiom length = 5)
5th run : BABABBAB (axiom length = 8)
6th run : ABBABBABABBAB (axiom length = 13)

1http://www.biologie.uni-hamburg.de/b-online/e28_3/lsys.html

28

From these simple rules, we witness a more complex property emerging. But, what happens

if we define our grammar as something that can be interpreted musically?

Design

Recall that with the Signal Mapping, we derived signals from an account. These signals

represented changes. We mapped then these signals directly to musical sequences. This time,

we will instead use these signals to drive an L-System to generate music.

Two options are open for consideration. One option, is to use the accounts to generate the

rules of the L-System. The alternative is to use the accounts to generate the starting axiom,

and apply a manually crafted set of rules. Let’s consider the merits of these two approaches.

Variation 1: Dynamic Rule Generation

If we decide to use the account to generate the rules, we are having to generate both the variables

and the constants. Therefore, the process of generating the rules from the account must consider

both musical structure (the constants in S) and reduction strategies (the variables in V). As

we are generating music, we should therefore attempt to hold as much control over the constant

symbols of S as possible, as it is these elements that will directly translate into music.

We could be more efficient by simply using the accounts to generate the variable symbols,

and define the constant symbols ourselves so that they conform to musical structures. In doing

so, we may as well separate the constants and variables from one another, placing these variables

in the start axiom. Doing this has the added advantage of resulting in a dynamic start axiom

that will be unique for each account.

By this logic, we can conclude that Dynamic Rule Generation is not the most efficient

approach to use. But, by simplifying this idea we have derived a better approach; that of

Dynamic Axiom Generation.

Variation 2: Dynamic Axiom Generation

Recall that instead of generating the rules from the accounts, we have chosen to manually define

the rules to conform to sensible musical sequences. This way we can be assured that the L-

System will produce musical sequences that will conform to what we understand to be music

29

rather than a chaotic collection of notes.

Now, consider that we now use the accounts to directly generate the start axiom. This

will result in a unique axiom for each account, which when operated on by the L-System will

produce an equally unique piece of music. The question then becomes, how can we use data in

the account to generate an appropriate starting axiom?

The signal generation from the Signal Mapping implementation presents us with a way of

evaluating the health of an account, and we can build on this idea with an L-System. We can

divide the potential spread of signal values into discrete grades (remember that a signal strength

above 1.0 indicates an increase, and below 1.0 indicates a decrease). For example, let’s say we

try a six grade system:

A > 1.25
1.25 ≥ B > 1.15
1.15 ≥ C > 1.05
1.05 ≥ D > 0.95
0.95 ≥ E > 0.85
F ≤ 0.85

By doing this, we map signal ranges to symbols. If we include these characters in the

grammar of our L-System as replaceable symbols, we can define the set of variables V as:

V = {A,B,C,D,E, F}

An arbitrary account may therefore result in the following starting axiom2:

ω = 〈C,D,A,B,B〉

At this stage, we have successfully defined two parts of an L-System: The set V of variables,

and we can derive the start axiom ω from an account. The next step is to carefully choose a

set of symbols which can be interpreted as music. These symbols will form the constants of S

in our L-System. It is at this stage that we need to decide on an appropriate grammar.
2Note that although usually L-Systems uses a string to represent its axiom, I have chosen to use a list of

characters. In the implementation, we will see that a list is easier to manipulate in Python.

30

Defining a Grammar

If we look at music from the point of view of how a note in a sequence relates to its predecessor,

then a note can be in one of three states; higher, lower or unchanged. We can use this to begin

defining the set of variables V .

Let ‘u’ = raise note by a tone
Let ‘d’ = lower note by a tone
Let ‘s’ = sustain note

Given a starting note, from these three symbols we can generate a sequence of notes. How-

ever, this grammar is quite limited, and we would like to expand it so it can better represent

many more musical aspects such as chords, and key changes. To this end, we can expand the

grammar with the following additions:

Let ‘/’ = Raise note by two tones
Let ‘ ’ = Lower note by two tones
Let ‘r’ = Don’t play anything (rest)
Let ‘.’ = Increase overall key by a semi-tone
Let ‘,’ = Decrease overall key by a semi-tone
Let ‘j’ = Shift into a major key
Let ‘n’ = Shift into a minor key

It would also be nice to add a harmony to complement a melody (a harmony in this case is

a note played n semi-tones above the note of the melody):

Let ‘+’ = Turn on harmony
Let ‘-’ = Turn off harmony

With this, we have a full grammar for the set S of variables:

S = {‘u’, ‘d’, ‘s’, ‘/’, ‘ ’, ‘r’, ‘.’, ‘,’, ‘j’, ‘n’ }

Adding Stacks to the Grammar

In computer science, a stack is a primitive (yet invaluable) data structure which only allows

items to be added and removed from its top. Therefore the fist item into the stack will be the

last item removed, and vice-versa.

31

Why would we need to make use of stacks in this L-System? Without a mechanism to

jump back to earlier points in the sequence, the music would meander up and down, with no

specific points to break it up. Adding a stack brings more musical structure, and allows different

account attributes to affect parts of the music independently.

Many L-System implementations have built in support for the use of stacks. So, when we

play the music from an axiom produced by this L-System, if we encounter a stack “push” symbol

(which looks like ‘[’), the program will record the current note, chord and key signature. It then

continues playing the music until it reaches a stack “pop” symbol (which looks like ‘]’). When

this happens, the program resets the note, chord and key signature to its earlier state, and

continues playing the axiom.

Let ‘[’ = Push current state onto stack
Let ‘]’ = Pop current state from stack

Interpreting the Grammar

Turning the grammar in the axiom into music is a simple matter. Let note be the current note,

tonic be the tonic (root note of the current key) and scale be the scale (major or minor) of the

current key. Let harmony be whether a harmony note is being played or not.

note→ {21 ≤ note ≤ 108, note ∈ N}
tonic→ {21 ≤ harmony ≤ 108, harmony ∈ N}
scale→ {major,minor}
harmony → {true, false}

We initialise note, tonic, scale and harmony to values of our choosing, and begin to process

the axiom into MIDI values. Chords are calculated by playing a triad from the current key

(notes 1, 3 and 5 of the scale)

An Example in Action

Let’s look at a simple parsing example. Consider the following axiom ω generated by our

L-System after a few runs:

32

ω = 〈 ‘s’, ‘u’, ‘u’, ‘d’, ‘[’, ‘u’, ‘u’, ‘u’, ‘u’, ‘]’, ‘s’, ‘d’, ‘d’, ‘d’ 〉

If we set our starting note to Middle C (MIDI value of 48), the above would transcribe the

following sequence of notes:

48, 50, 52, 50, 52, 54, 56, 58, 50, 48, 46, 44

Selecting the Rules

With the axiom being generated by the account, the rules of the L-System must be defined

manually. As we want our generated sequences to sound as musical as possible, we should

ensure that our rules define short sequences with proper musical structure. To do this, we

enforce some constraints when defining these short sequences.

To begin with, we can choose a time signature. Doing so means that we should have a

consistent amount of notes in each sequence. For example, a time signature of 4 beats per bar

would mean that the number of notes in each sequence must be divisible by 4.

So, we as a result of this, we might define the rules for our six-grade system as follows:

(A→ j..uuuu)
(B → [..suud])
(C → uuu uuu)
(D → ddd/ddd/)
(E → [, , sddu])
(F → n, , dddd)

This defines some suitable musical sequences, which are appropriate for the account signal

ranges they’re representing. However, you will notice that after one iteration of the L-System,

the axiom will be fully reduced (ie, will consist entirely of non-replaceable symbols).

To complete the rule set, we need to keep producing replaceable symbols at each iteration.

This might be done by modifying the rules to appear as follows:

33

(A→ j..uuuuB)
(B → [..suud]D)
(C → uuu uuu A)
(D → ddd/ddd/F)
(E → [, , sddu]C)
(F → n, , ddddE)

The way in which the L-System produces music is often surprising, and it is not immediately

obvious how to place the variables within the rules. On one hand, we want to have the music

mimic the account as closely as possible. On the other hand, we want to encourage the emergence

of interesting music from the L-System.

To help us choose which replaceable symbols to use, I propose that we can visualise members

of V occurring in P as a Finite State Machine (FSM). In this way, when we define the set

of rules P , we can see how the L-System will reduce the axiom ω (figure 5.1).

Figure 5.1: A Finite State Machine showing a possible application of replaceable symbols within
the rules of an L-System.

From figure 5.1, we can see that our rules are probably not all that sensible. For example, A

reduces to a string containing D. This leads to more varied music being generated, but prevents

a true impression being given of an account. A more sensible strategy is given in the figure 5.2.

This gives us the following rules:

(A→ j..uuuuB)
(B → [..suud]C)
(C → uuu uuu C)
(D → ddd/ddd/D)
(E → [, , sddu]D)
(F → n, , ddddE)

34

Figure 5.2: A Finite State Machine showing a more sensible application of replaceable symbols
within the rules of an L-System.

Selecting the Number of Iterations

With all parts of the L-System now defined, there remains one important question: How many

iterations should the L-System run for?

To help answer this question, we might choose to think about the overall length of the final

piece of music. If we can make a decision on roughly how many beats in total the music should

play for, then we can arrange the program to keep running the L-System until the axiom length

meets this requirement.

There is a good reason for taking this approach. As the listener will be paying close attention

to the music, they may suffer from listening fatigue3, so the music should not play for too long.

Programming Functions for an L-System

The first step of implementation is to program a set of functions which can represent an L-

System. By keeping as close to the formal definition as possible, and by making use of Python’s

lists and tuples, we define the following functions:
3Listening Fatigue is a lapse in concentration caused when the brain has to work hard to interpret what it’s

hearing. During the evaluation, testers will have to listen to lots of these musical sequences. Therefore, listening
fatigue is a real concern.

35

getLSystem(V, S, w, P): Takes in the elements of an L-System, and validates them to
ensure that the L-System is properly defined. If it is, it returns a tuple representing the
L-System. If not, it returns an empty tuple.

runLSystem(lSystem): Takes in a valid L-System tuple and applies the rules against
the start axiom. It then returns the modified L-System tuple.

getAxiom(lSystem): Takes in an L-System tuple, and extracts the axiom, returning
it as a list of elements.

Recall that it is common for many L-Systems to make use of stacks. Therefore, this imple-

mentation implicitly includes the stack operators “[” and “]” in the set of constants.

The L-System functions are kept separate from the rest of the L-System implementation,

and reside in a function library Linden.py, which is imported into the main implementation.

Programming the Axiom Generator

The bulk of the implementation for the L-System generator resides in a new function library

called LSS.py. Once again, we import Settings.py (which contains all the settings) and

Shared.py (which contains functions shared across implementations).

For the most part, the implementation directly mimics the design strategy discussed so far

in this chapter. We will begin by looking at the part of the program which generates the start

axiom. Consider the following functions:

generateAxiomSixGrade(signals): Returns a start axiom generated by splitting signal
ranges into six grades.

generateAxiomTenGrade(signals): Returns a start axiom generated by splitting sig-
nal ranges into ten grades.

For example, we feed the function generateAxiomSixGrade() the following signal list:

[1.513267626990144, 1.4732345248474281, 0.6928702010968921, 0.6676837725381415,

1.4555288461538463]. The axiom returned might be: [’A’, ’A’, ’F’, ’F’, ’A’]. (The

values which specify the grade boundaries are declared in Settings.py).

36

Programming the Axiom Parser

Interpreting the final axiom generated by the L-System is more involved than generating the

start axiom. Given that we have a melody, a harmony and chords (chords are made up of three

notes), this gives us a total of five concurrent note sequences which are generated from the

axiom. To this end, we represent each note sequence as a list of MIDI values (integers), and

these lists are returned in a tuple of order 5.

The following functions are used when parsing the axiom, and are called depending on the

nature of the current symbol (note that variables of set V in the axiom are simply ignored

during parsing):

appendHarmony(outputMusicHarmony, currentNote, harmonize, harmonyKey, keyMap
): Takes in a list of harmony notes (outputHarmony) and uses the other parameters to append
the harmony note to this list. It then returns it.

getDefaultKeyMap(keyMap): Returns a keyMap which is used by functions such as
pitchUp() to determine where adjacent notes are in the scale.

pitchUp(note, keyMap): Increases note to the next note above in the scale.

pitchDown(note, keyMap): Decreases note to the next note below in the scale.

doublePitchUp(note, keyMap): Increases note two note up in the scale.

doublePitchDown(note, keyMap): Decreases note two note up in the scale.

keyShiftUp(keyMap, shiftDistance, note): Shifts keyMap up by shiftDistance.
Returns a shifted keyMap and a shifted note as a pair.

keyShiftDown(keyMap, shiftDistance, note): Shifts keyMap down by shiftDistance.
Returns a shifted keyMap and a shifted note as a pair.

getChord(keyMap): Returns a tuple consisting of the 1st, 3rd and 5th note of the
scale.

chordComparison(currentChord, lastChord): Compares two chords. If the two
chords are the same, it sustains the chord. Otehrwise, it plays the new chord. This is used to
stop the chord being re-played each beat.

keySwitchMinor(keyMap): Shifts keyMap into a minor key.

keySwitchMajor(keyMap): Shifts keyMap into a major key.

37

With these functions now written and successfully tested for robustness, we have two more

functions to define which complete the program:

produceMusic(axiom, startNote, keyMap): Takes in an axiom, a start note and a key
signature. Returns a tuple with lists of MIDI values.

main(argv): The main() function which is invoked when the program is run. It
reads the accounts, generates and runs the L-System, calls produceMusic() and then outputs
the music.

As these two functions are so important, their pseudocode is given below. Firstly we’ll look

at produceMusic():

38

• produceMusic(axiom, startNote, keyMap):

• Initialise currentNote = startNote

• Initialise currentChord = NULL

• Initialise outputMusic = 〈〉
• Initialise harmony = NULL

• Initialise harmonize = false

• Initialise noteStack = 〈〉
• For each character in axiom:

• if c == ‘u’ then increase currentNote by 1 tone

• if c == ‘d’ then decrease currentNote by 1 tone

• if c == ‘/’ then increase currentNote by 2 tones

• if c == ‘ ’ then decrease currentNote by 2 tones

• if c == ‘s’ then sustain currentNote

• if c == ‘r’ then currentNote = NULL

• if c == ‘.’ then increase keyMap’s tonic by 1

• if c == ‘,’ then decrease keyMap’s tonic by 1

• if c == ‘j’ then shift keyMap into a major key

• if c == ‘n’ then shift keyMap into a minor key

• if c == ‘+’ then harmonize = true

• if c == ‘-’ then harmonize = false

• if c == ‘[’ then push currentNote, harmonize & keyMap onto
noteStack

• if c == ‘]’ then pop currentNote, harmonize & keyMap from
noteStack

• currentChord = 1st, 3rd and 5th note of keyMap

• if harmonize == true && keyMap in major then harmony = currentNote +
4 semitones

• else if harmonize == true && keyMap in minor then harmony =
currentNote + 3 semitones

• else harmony = NULL

• Append currentNote, harmony & currentChord to outputMusic

• return outputMusic

From the above pseudocode, we can see that the algorithm begins with a starting note, and

a key signature (consisting of a tonic and scale). Then, for each character in the axiom, it makes

adjustments to these attributes.

For each axiom processed, we count that as one beat of the bar. Therefore, after processing

each character, it records the current state of the attributes to outputMusic.

39

The main() function works in a similar fashion to the Signal Mapping’s implementation.

Here is the pseudocode:

• main(argv):

• Read in accounts

• Generate signals from accounts

• Generate compoundSignal from signals

• if compoundSignal > 1.0 then keyMap in major

• else keyMap in minor

• l system = new L-System generated from specification in Settings.py

• run l system until axiom length ≥ minimum specified in Settings.py

• outputMusic = produceMusic(l system.axiom)

• Send outputMusic to be played

Preliminary Evaluation

A preliminary evaluation of this approach was performed consisting of just a few testers. The

objective was to try out several rule sets and decide which one would be used in the full

evaluation.

The discovery was that the sequences produced were much more musical (more complex)

than the Signal Mapping approach. From this, we can formulate a testable hypothesis; That

the more complex the music, the harder it will be to accurately determine the true nature of

the account.(figure 5.3).

In arriving at this conclusion, we would use a simple rule set (such as the ones given in this

chapter) for the coming evaluation.

Figure 5.3: A sliding scale to show how as musicality increases, ability to accurately predict the
account’s health decreases. The reverse is also true.

If we also take into account issues of listening fatigue, we may also conclude that the more

concentration is required to analyse the music, the harder it is to predict the account’s health

40

(figure 5.4). Therefore, the maximum length of a musical sequence will be limited to under 20

seconds.

Figure 5.4: The triangle shows how increasing musicality or an increase in the need for concen-
tration makes it more difficult to accurately predict the account.

Summary

In this chapter, we have looked at L-Systems as a way of generating music from accounts.

The emergent nature of L-Systems makes them well suited to an application such as music

generation.

We have also seen some techniques for generating the L-System from an account, and we

have settled on a way to dynamically generate the axiom using a grading system.

Finally, we also formed a hypothesis that the more complex the music, the harder it will be

to determine the true nature of the account. As we will soon see, the results of the evaluation

will yield some surprises.

In the next chapter, we will fully evaluate this implementation, along with the Signal Map-

ping approach of the previous chapter.

41

Chapter 6

Evaluation of the First Two Implementations

“Inspiration may be a form of super-consciousness, or perhaps of sub consciousness,

I wouldn’t know. But I am sure it is the antithesis of self-consciousness.” - Aaron

Copland

In this chapter, we will evaluate the Mapping and L-System implementation with a carefully

considered strategy. This strategy will place special emphasis on the main problem posed by

this project; that music is subjective.

How Can an Objective Evaluation be made of a Subjective Concept?

Recall that we looked briefly at the concepts of music cognition. From these concepts, we

understood that sound is “processed” into music by a human based on their personal experience.

In other words; music is subjective.

How can we describe aspects of an account that will present themselves through the gener-

ated music? How can we ensure that these aspects are described in a way that both represent

the aspects of the account and corresponding aspects of the music that relate to the account?

To help answer this, a simple analysis of publications such as The Financial Times is called

for. A browse through will reveal a surplus of buzz-words which can be used to describe aspects

of an account (figure: 6.1). An accountant who is looking at an accountant will develop an

overall impression of an account. They can then describe it to a novice using a selection of

these words. A novice, with little understanding of accountancy, can then understand the

overall state of the account. These buzz-words are both accessible to an expert accountant, and

a novice.

42

Figure 6.1: This word cloud shows how frequently some buzzwords occur in financial articles.
The larger the font size, the greater the word’s frequency.

As an example, consider a company with vastly increasing debts and vastly decreasing profit.

We give this company’s balance sheet to an expert to analyse. Their experience allows them to

perceive the dire state of this company, and choose the word “plunge” to describe the company’s

state.

Now consider that we generate music from this account using one of the strategies developed

in previous chapters. This music is played to someone who has not seen the balance sheet. What

they might hear is a lot of descending scales in a minor key quickly moving downwards. They

may well also choose to describe this as a “plunge”. It is this synchronisation of descriptions

that we are looking for when we evaluate the approaches.

Therefore it is these buzz-words that will be the key to bridging the descriptive gap between

the accounts and the generated music.

Human Factors

In the previous chapter, we briefly mentioned the issue of listening fatigue. If the tester’s

concentration lapses during the testing, they will have the opportunity to play a sequence again.

They will also have the opportunity to take breaks during the testing process. Additionally,

sequence length are limited to a maximum of 20 seconds, and the whole testing process is

intended to take no longer than 20 minutes.

43

Preparation of Test Data

Fifteen accounts were sent to the expert to be evaluated. From these, six were chosen.

Of these, Three were selected which displayed mostly desirable aspects (good investment

proposition), and Three were selected which displayed mostly undesirable aspects (bad

investment proposition).

From the approaches, four methods of generating music were chosen. From the Signal

Mapping approach, music was generated both in sequence and in parallel. And, from the

L-System approach, music was generated firstly with strings and piano and then with piano

only in staccato.

This results in a total of 24 generated musical sequences which were prepared for evaluation.

These musical sequences were then shuffled randomly.

Designing an Evaluation Strategy

With most testing strategies, a baseline is needed which can be used as a fixed point for com-

paring data. For this, an accountant was asked to analyse 16 accounts (A sample of the ques-

tionnaire that the accountant received can be seen in figures 8.8, 8.9 and 8.10 of the appendix).

The accountant was asked to choose a selection of terms to describe the account, and were

also asked to state whether they would invest in the company based on what they’d seen (they

could select ‘yes’, ‘no’ or ‘unsure’).

Figure 6.2: A diagram showing how the evaluation process is organised.

44

For the testers who would be listening to the music, they will have to choose a selection of

terms to describe the music, and also make an assessment as to whether they’d invest in the

company or not (A sample of the questionnaire that the testers received can be seen in figures

8.11 and 8.12 of the appendix). The testers were all students, but from a variety of academic

disciplines.

The testers were also asked to assess the ‘musicality’ of each music sequence they listened

to, giving it a rating from 1 (not musical) to 5 (very musical).

The motivation behind this strategy as that both the accountant and testers are using the

same terminology to evaluate the account.

The tester was provided with the following information before testing:

1. That the music is generated from company accounts by a computer.

2. That the music is intended to reflect the state of the account.

3. That the test has no ‘right’ or ‘wrong’ answers.

The testers are not aware of the following details:

1. That the music they are listening to is generated by four different methods

2. That there is actually only a total of six accounts, not twenty-four.

The testers are left to assume that each piece of music represents a unique account (although the

more perceptive testers may well have guessed that this was not the case) The above approach

attempts to counter the issue of subjectivity by doing the following:

1. Taking a baseline analysis of the account by asking the opinion of an ‘expert’ (an accoun-
tant). This baseline will be used as the origin for comparison with other test results.

2. The tester is intended to be kept in the dark that they are listening to each account four
times over.

3. The random ordering help remove any bias if the tester does suspect that theyre going
over the same accounts twice.

4. The random ordering help evenly disperse statistical noise caused by listening fatigue.

45

Results Analysis

Before beginning analysis of the results, we need to clarify the terms used in this section:

The Expert A practicing chartered accountant who analysed the accounts.
The Tester One of several individuals who evaluated the musical output.
Output type One of the four music generation strategies.

Figure 6.3: A graph showing the average amount that testers agreed with the expert’s decision
whether to invest in an account, not invest in an account or to remain undecided. (note that
‘strings’ and ‘piano’ are L-System generated sequences)

The challenge of the evaluation was to deduce how often the testers agreed with the investment

decisions of the expert. Figure 6.3 shows on average how much agreement there was (recall that

the choice was one of three categories: Invest, don’t invest or undecided).

Looking at the averages for each of the four output types, we see that the two L-System

implementations (Strings & Piano) were more successful than the two Signal Mapping imple-

mentations (Sequential & Parallel).

We can gain more insight if we look at how spread out the opinions of the testers were for

each of the output types. This can be done by calculating their standard deviations:

σSignal Mapping Sequential = 0.162623126
σSignal Mapping Parallel = 0.235312347
σL−System Piano = 0.305595206
σL−System Strings = 0.30424001

46

Figure 6.4: A graph showing how many times testers selected buzzwords for each account in
the Signal Mapping Sequential output. A star designates that this option was selected by the
expert.

We can see that the Signal Mapping outputs show less of a spread than the L-Sytem outputs.

From this we might deduce that the L-System output types were more ambiguous than the

Signal Mapping output types, and therefore the tester’s investment choices were more varied.

Why might this be? Consider that the Signal Mapping output types were composed of simple

musical sequences (scales going up, etc). These movements are clear and were easier to interpret

by the testers.

The L-System output types were generated from rules, and therefore produced sequences

which were not as clear cut as an ascending scale might have been. This would mean that it

was more difficult to arrive at a conclusion as to the state of the account.

That said, if the L-System output types were more ambiguous than the Signal Mapping

output types, then why would it be that the L-System approach would fare better? Intuitively,

we might assume that simpler musical sequences would be easier to interpret. In order to solve

this mystery, we need to investigate further.

Recall that we used descriptive ‘buzzwords’ as a way of evaluating the state of an account.

Both the expert and the testers selected one or more words to describe each account (or account’s

47

Figure 6.5: A graph showing how many times testers selected buzzwords for each account in the
Signal Mapping Parallel output. A star designates that this option was selected by the expert.

output sequence) based on their perception. From figures 6.4, 6.5, 6.6 and 6.7 we can tell how

often the testers chose the same descriptive words as the expert.

What we find with the two Signal Mapping implementations is that the testers were poor

at correctly picking the same buzzwords as the expert. However, with the L-System implemen-

tation, the testers were better at selecting the same word.

As both of the two implementations are based on the same derived signals, we can trace

the difference down to the L-System processing. With the Signal Mapping implementation,

musical sequences are produced mechanically by performing calculations. With the L-System

implementation, we have a more organic process. This process appears on the surface to produce

more complex music, but in fact we would suggest that biologically-inspired techniques are better

able to tune the music towards the human ear.

In terms of the average number of listens needed by each tester for each output type (figure

6.8), there is an approximate correlation between the length of the sequence, and the number of

listens needed (figure 6.9). For example, a very short sequence (3 seconds) sometimes requires

more listens than a longer piece (20 seconds). This is of interest to us, because the tempo

reflects the amount of change in an account.

48

Figure 6.6: A graph showing how many times testers selected buzzwords for each account in
the L-System Strings output. A star designates that this option was selected by the expert.

This is also an unusual observation, because we might intuit that a short sequence would

not need a further listen because it is simpler to analyse1. As a concequence of this, we may

wish to take into account that the tempo setting may have a side effect in the way the music

was perceived by the tester.

But, what about the musicality of each approach? Figure 6.10 shows how ‘musical’ the

tester considered each of the four types of output sequence to be, on a scale of 1 to 5. The two

best achievers in this instance were the Sequential Signal Mapping and the Piano L-System.

Why was the prediction accuracy lower for the Signal Mapping Parallel output than it was

for its Sequential counterpart? I would suggest that this is for three reasons. Primarily, we have

several musical sequences playing concurrently in the Parallel output, which could make them

difficult to tell apart. In the Sequential output, these sequences are played one after the other,

in order of importance.

The second reason might be to do with the key shift which occurs in the Parallel output.

Remember, that in order to avoid discordancy, all sequences are shifted into the same key for
1The short-term memory model describes the way the human brain can record a small number of items in

detail for up to 30 seconds. This would suggest that a shorter piece of music would be easy to hold in the mind
than a longer one.

49

Figure 6.7: A graph showing how many times testers selected buzzwords for each account in
the L-System Strings output. A star designates that this option was selected by the expert.

the Parallel output. In the Sequential output, sequences retain their own key, therefore giving

them their own ‘flavour’.

The third reason I propose is that as the sequences are played one after another in the

Sequential output, the tester was able to look at their relations to each other in a different way

to having them played in parallel. For example, key changes stand out between parts of the

sequence. This perspective is lost in the Parallel output.

Summary and Conclusions

By looking at the results, we can see that the music does to an extent represent the

accounts they’re generated from. Additionally, we witness that the L-System approach

performs the best, although both approaches do have their merits. We discovered that under

ideal circumstances, testers will only correctly analyse the account from the music 64% of the

time.

Testers considered the sequences they heard as music (ie, have a high level of

‘musicality’). This is important, as one of the objectives of this project is to generate music

50

Figure 6.8: A graph showing the average number of listens needed for each output type. (note
that ‘strings’ and ‘piano’ are L-System generated sequences)

from accounts. In this area, we can say that we have been successful.

We discovered that, paradoxically, adding an extra level of complexity to the music (via

the L-System implementation) actually improves a person’s ability to assess the account. This

implies that the emergent properties displayed by the L-System make the nature of the accounts

more clear. Perhaps it shouldn’t be surprising that a biologically-inspired approach should work

well when the subjects are biological!

What is really needed now is a way of formally defining the attributes in music in the same

way that we can define attributes in the accounts. Achieving this would open up new avenues

which would help us generate music which more closely represents the account, and it is this

challenge we will attempt to meet in the next chapter.

51

Figure 6.9: A graph showing the correlation between the length of a musical sequence (in
seconds) and the average number of listens that the tester needed.

Figure 6.10: A graph showing the average spread of the musicality ratings given to each output
type.

52

Chapter 7

Approach 3: The Financial Genome

In the previous chapter, we used a set of descriptive words to simultaneously describe features

of an account and musical patterns. This technique was used to evaluate the success of the first

two implementations.

In this section, we will see how these words can be used to generate a genome which rep-

resents an account. We will only go so far as to specify as way of representing this genome,

and we will then define a very small genome as a way of demonstrating how this approach will

work, and produce a prototype which allows some basic manipulation.

Second Case Study: The Music Genome Project

In 2006, a group of musicians developed a new way of analysing music. Their aim was to

use biological inspiration to classify discrete attributes of music. They called this The Music

Genome Project, and used this to produce the successful internet based Pandora Music

service.1

The idea they proposed was to have musicians listen to various pieces of music. They would

analyse them by ear, and decide which musical elements (genes) made up the song.

Their ultimate aim was to be able to take the abstract ‘essences’ or ‘moods’ which make up

a piece of music, and identify them as something tangible that can be used for classification.

This way, when a user likes a specific song, the system can make recommendations to them

based on songs with a similar genome.
1http://www.pandora.com/mgp.shtml, 21st Feb 2008

53

Notation and Definitions

|S| The cardinality of S
7→ Maplet (maps two elements together)
Gene An arbitrary unit which determines a characteristic of an account or piece of music

Background

Consider that the approach developed for the Music Genome Project can be reversed to generate

music from accounts. If we define a set of genomes, we can then use this as a midway point

to map accounts to music. For example, each gene (we will assume a gene has only a single

allele) will represent a particular part of some arbitrary music. It will also represent a specific

feature in a given account. Added to this, is a set of rules which decide expression rules for sets

of genes (transcription rules).

Let G be a single gene
Let A be an account consisting of many genes

Using the idea of using words to represent the state of an account, we can set up a financial

genome for an account as follows:

Let Nf be a sequence
Let Nf be the genome for an account

By the same token, we can also have a musical genome given as follows:

Let Nm be a sequence
Let Nm be the genome for music

As Nf and Nm are sequences, the order is important. Take for example the relationship seen

in figure 7.1. As elements Nf and Nm are mapped to specific genes, both sequences need to

be specified in the order such that a gene n will be expressed correctly its financial nature in

Nf and its musical nature in Nm. The genome from figure 7.1 might therefore be sequenced as

follows:

54

F = {0 7→ null, 1 7→ slump, 2 7→ soar, 3 7→ plunge, 4 7→ boom}
Na = {0 7→ null, 1 7→ descending, 2 7→ ascending}
Nb = {0 7→ null, 1 7→ major, 2 7→ minor}
Nc = {0 7→ null, 1 7→ scale, 2 7→ crescendo, 3 7→ chord}

The intersection of these two sequences’ enumeration produces a sequence N , which is the

general genome. Nf and Nm are simply expressions (phenotypes) of {F,N}.

Figure 7.1: Example generated from a simple genome. The genes represent both the features
of an account, and also a corresponding musical feature.

Defining Genes

At the moment, we have a limited system where by an account feature is directly mapped to a

musical feature. We can now propose that this system be extended so that an account feature

can be mapped to a combination of musical elements.

The first thing that needs to be done is to define rules that take raw numbers, and reduce

them to a simple account keyword which describes its overall state.

For example, a decrease in yearly profit from 100,000 to 90,000 is a decrease of 10%. If we

look this up in a ‘word table’, we may find that this corresponds to the word ‘slump’.

55

We then define musical sequences in terms of words as well. In this case, I have elected

to use two words to describe a musical sequence. For example, the above 10% decrease in

profit corresponds to the word ‘slump’ which is linked to the same genome as the description

‘descending scale’. This fully defines a gene.

Rules for Defining a Gene

Below is a table for a specific account (and its generated music), where by each gene has a

unique number:

Gene # Account Wrd Music Wrd 1 Music Wrd 2 Music Wrd 3
58800 Boom Descending Minor Crescendo
630 Slump Ascending Major Scale
13720 Plunge NULL Major Chord
2160 Soar Ascending Major Scale

The gene numbering may seem random upon first glance, but I will show in due course that

there is a logical method, and that each combination of words results in a unique gene value.

We will now go forward to explain how this genome was generated. We will use the following

notation:

Let A be last years account
Let B be this years account
Let F be a financial buzz-phrase
Let W1 be music word 1
Let W2 be music word 2
Let W3 be music word 3
Let G be a gene
Let GN the set of all possible genes for an account

We now enumerate F as follows:

Financial Phrase Enumeration
NULL 0
Slump 1
Soar 2
Plunge 3
Boom 4

We also enumerate W1 and W2 as follows:

56

Musical Word Word ID Enumeration
NULL W1 0
Descending W1 1
Ascending W1 2
NULL W2 0
Major W2 1
Minor W2 2
NULL W3 0
Scale W3 1
Crescendo W3 2
Chord W3 3

We then generate a rule table, a part of which may appear as follows:

ID Rule
1 if A>B then W1 = ‘Descending’
2 if A ≤ B then W1 = ‘Ascending’
3 if difference between A and B ≤ 10% then W2 = ‘Scale’
4 if difference between A and B > 10% and ≤ 70% then W2 = ‘Crescendo’
5 if difference between A and B > 70% then W2 = ‘Chord’
.

From this table, W1 and W2 now have values (note, all rules must be processed until both W1

and W2 have values). We can then assign a unique identity to each gene in our genome. A

Gödel Numbering Function is a suitable way to achieve this, and shows how each combina-

tion of words results in a unique identifier:

G = 2F · 3W1 · 5W2 · 7W3

The reason for assigning a gene’s identity in this way is so that over the processing of many

different accounts, common genes can be identified. These genes will always have a unique iden-

tifier, and this feature will become incredibly useful if we wish to implement machine learning

based on human feedback to decide which genes are expressing themselves the best.

Invalid Genes

Clearly, some of these genes will be invalid. In the first case, situations such as ‘ascending chord’

simply would not make sense. You will notice that there are several NULL values which can

be attributed to a gene. These exist simply so that we can remove any words from a musical

57

description without having to change the structure.2

Also, due to the nature of the numbering function used, most values will produce genes that

cannot be expressed. However, by using a rule table to detect genes, we can be assured that

the genome will consist only of valid genes. Any gene enumerations not present in GN cannot

be generated from an account by accident.

Gene Expression

At this point, each set of accounts has a unique genome:

Let GN be the set of all possible genes in the genome (the genome)
Let GNn be the genome for account n
GNn ⊂ GN

Therefore, the genome for the example in 7.1 is given as the setGNexample = {58800, 630, 13720, 2160}.

Implementation as a Prototype

Recall that we have a unique identifier for each gene, generated by enumerating the words and

applying the enumeration to a Gödel numbering function. Because of this, we can make use

of Python’s dictionary feature. Dictionaries store data in a similar way to lists, but instead

of returning an entry via it’s position in the list, we use a key. This key will be the gene’s

identifier.

Here is the syntax for a gene’s dictionary entry:

{ geneID: [’Financial Keyword’, [’Direction’, ’Key’, ’SequenceType’]] }

Therefore, we might have a gene which is defined as:

{ 88200 [’Plunge’, [’Ascending’, ’Minor’, ’Crescendo’]] }

We also need to specify which word combinations for valid genes. To do this, we define W VALID

as follows:
2A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery, Alex A. Freitas, section

3.1.2: http://www.macs.hw.ac.uk/~dwcorne/RSR/freitas01survey.pdf

58

W VALID = [([’Descending’, ’Ascending’], [’Major’, ’Minor’],
[’Scale’, ’Crescendo’]), ([’NULL’], [’Major’, ’Minor’], [’Chord’])]

In W VALID, each tuple consists of three items. Each of these three items is a list of words.

Within each tuple, the valid genes are the set produced by the cartesian product of these lists.

We then call the getValidGenes(GN, W VALID) function, which takes in our specification

of valid genes, as well as the full genome (GN). It returns a dictionary of just the valid genes.

Gene Encoding

Encoding the genes requires a simple application of the enumeration we described above. For

example, consider the following gene:

{ 1260: [’Soar’ , [’Ascending’, ’Major’, ’Scale’]] }

Using the encoding we describe, this would result in the following list:

[2, 2, 1, 1]

It then becomes a straight forward matter to perform mutations on single genes, and evolution-

ary algorithms on gene sets. Seeing as each gene always results in a unique identifier, it is also

straight forward to generate a Gödel number and locate its position in the dictionary. In this

way, we can determine whether the mutant is a valid gene or not.

Gene Weightings

In addition to the current setup, we assign each gene a weight based on its fitness:

Let Wn be a sequence containing the weights of genes in account n
|Wn| = |GNn|
Let m be the weight multiplier

So, as the set GN is built whilst processing the account, a sequence (represented by a list in

Python) is built up. The sequence W1 corresponding to GN1 would be 〈1.0, 1.0, 1.0, 1.0〉 as each

of these genes is detected only once.

59

Lets say for example, that an account GN2 has the same selection of genes as GN1, but gene

900 is detected twice, and gene 54000 is detected three times. We set m to a constant value of

1.5. Each weight value is calculated as follows:

Let Gn be a gene
Let c be the number of times Gn is detected
The weight of Gn is given by mc− 1

In the case of GN2, this gives us W2 = 〈1.0, 1.0, 1.5, 2.25〉

Functions of the Prototype

Below is a full list of functions employed in the prototype:

godel(a, b, c, d): Gödel numbering function.

displayGenome(GN): Function to display the genome.

generateGenes(F SET, W1 SET, W2 SET, W3 SET): Generate the set of all possible genes.

getValidGenes(GN, W VALID): Generate the set of all valid genes (ie, those with valid
musical sequences).

getRandomGeneSet(n, GN VALID): Produce a random set of genes with n members.

generateEncoding(gene): Generates an encoding for a gene.

generateEncodings(genes): Generates encodings for a set of genes.

decodeGene(encoding): Decodes a gene.

decodeGenes(encodings): Decodes several genes.

mutateGene(gene, validGenes): Performs an single-random-gene new-allele mutation
given an encoding.

mutateGeneSet(genes, m, validGenes): Performs an m-random-gene new-allele mutation
on a set of genes.

generateGenomeWeights(genome): Generate evenly distributed weights for a genome.

increaseWeight(encodedGene, weights): Increase the weight of a gene.

The prototype operates by calling functions from within the Jython interpreter in order to

60

perform the operations.

Beyond the Prototype

Due to time constraints, the prototype was not developed beyond its current state. The next

stage would have involved plugging the genome into one of the first two implementations. A

population would have been generated for an account, and its fitness evaluated in relation to

the music produced. A number of experts would have been required to make this a reality.

Summary

In this, the penultimate chapter, we have seen how we can use words to describe both accounts

and music. By using the cartesian product, we can produce a genome set which covers all

mapping possibilities of accounts to music. The evaluation of the fitness of these genes is the

domain of financial experts and musicians, and these resources lie outside the scope of this

project.

Over the previous chapters, we have looked at two full implementations and one prototype.

In the next chapter, we will sum up and see what conclusions have been reached from this

project.

61

Chapter 8

Conclusions

We now arrive at the end of the project, and in this final chapter we will reflect upon what

we’ve discovered, and how future projects could continue the work.

Discoveries and Achievements

At this point, it is pertinent to ask the question “What have we discovered from this process?”.

To begin with, we discovered that it is possible to generate music from accounts. More so,

we found that by refining techniques, we could get the music to approximate the account’s

features, so that a listener could make a guess at the state of the account. We also discovered

that a biologically-inspired approach worked much better than one which came from a purely

mathematical direction.

With the conclusion of this dissertation, we have successfully managed to generate music

from accounts. The evaluation implies that one of the approaches is over 60% effective in

representing the account’s true nature. Recall that these were the two main aims of the project.

Project Evaluation

The purpose of this section is to clear up any ambiguities for those readers who followed this

project through its first and second deliverables (The final document you are reading now would

be classed as the third deliverable).

By Deliverable 2, two implementations were proposed, namely the Signal Mapping and the

Financial Genome. During the course of the implementation, the L-System Music Generation

idea was formulated, and showed enough promise to warrant further exploration.

62

In the end, a full implementation of the L-System idea was produced, and evaluated along

side the Signal Mapping. Results of the evaluation showed that developing the approach was

worth the time and effort put into it.

Meanwhile, the Financial Genome approach was showing signs of being too ambitious for an

undergraduate dissertation. The design process continued to progress from the second deliver-

able, but a fully developed prototype was not able to be produced in the time available. Moreso,

the ambitiousness of the idea would have made evaluating such a prototype very difficult with-

out greater resources. In the end L-System implementation was pursued at the expense of the

Financial Genome approach.

However, the Financial Genome idea was not abandoned by any means. This resulted in

a greater overall quantity of work being performed than was originally proposed at the time

of Deliverable 2 (three ideas instead of two). Unfortunately, the Financial Genome was not as

fully developed as it was intended to be.

Future Work

The basic idea proposed of generating music from accounts is a vast one, and one with huge po-

tential. During the course of this project, we have developed some preliminary ideas, but there

is so much more work that could be done in this area. In this section, various avenues for future

work are proposed. Approximations of time scales are given with each proposal. (A medium

timescale should be considered to be the same amount of time spent on this dissertation.)

User Interface

1) Development of a user interface in Java (see appendix B, page VI). Time scale: short

2) Development of a web based version using a Java applet (see appendix B, page VI). Time

scale: short

3) Ability to read accounts from websites such as Google Finance via the use of data scraping

techniques (see appendix B, page VI). Time scale: medium

63

4) Full integration into a spredsheet application, as described in Douglas Adams’ book. Time

scale: medium

Signal Mapping

1) In this dissertation, only the balance sheet is used to generate signals. The implementation

could be expanded by also using the Income and Cash Flow statements. Time scale: medium

2) The concept of ‘skinning’ the processors to produce different types of musical output can be

applied. Time scale: medium

L-System Music Generation

1) Rule definitions: Research into how to structure the rules of the L-System so that they better

reflect the account’s nature. This kind of research would probably be suited to someone with a

musical background. Time scale: medium to long

2) What happens if we have longer strings in the replacement rules? This leads to more

control over the musical sequences used, but does it come at a cost? Time scale: short

3) We could use is to have additional variables in V of the L-System that produce ‘generic’ mu-

sical sequences not tied to any account features. These can be used to pad out the music, and

are included simply to provide colour to the music. This will increase the musical complexity,

but will it dilute the signs which point to account features? Time scale: medium

4) We could consider including more than one variable in a replacement rule. This way, the

axiom reduces in a less predictable manner, leading to more emergent properties. For example,

we could have a rule: (A→ BuuC). Time scale: short to medium

64

5) A ten grade system could be applied (and indeed, the implementation already supports this).

This would mean that a greater variety of music is produced, as there are more grade boundaries

for signals. However, the rules for each grade need careful planning, and many more accounts

are needed for testing a ten grade system than a six grade system, simply because of the greater

variety of music. Time scale: short to medium

6) Each account attribute has its own set of replacement rules. This would perhaps make it

easier to hear the movement of specific attributes within an account, as they could generate

their own sequences. Time scale: short to medium

7) We could define musical genres, allowing the user to choose a genre of their preference before

the music is generated. For example, the rules we defined in this chapter produce music which

is split into four beats per bar. If we reduced this to three beats, we could set this alternative

rule set up as its own ‘waltz’ genre. Time scale: medium to long

Financial Genome

1) Research into developing a fuller financial genome. The genome given in Chapter 7 only

defines a few simple characteristics. A fuller genome could lead to better music generation.

Time scale: long

2) Genes can be given the ability to be dominant or recessive. They can also be developed so

combining two genes produces a unique feature not found in any other configuration. Time

scale: medium

General Research

1) Music cognition tells us that a person’s perception of music is based on their experience. Re-

search could be conducted into how cultural background affects the perception of the accounts

when heard through the music. Time scale: long

65

2) There may be many other (and possibly better) approaches to generating music from ac-

counts. Some of these could be investigated. Time scale: medium to long

3) As the generated music becomes more complex, what is the ‘cost’ associated with this in

terms of ability to accurately assess the account’s true nature? Time scale: medium

Final Conclusion: Is There a Real-World Application for Financial Music?

After reading through this document, the reader may conclude that whilst Financial Music is

an interesting topic for research, it lacks any value as a real-world application, perhaps doomed

to reside with thousands of other programming curiosities which can be found the internet.

But, if the amount of accounts that a novice can correctly analyse through the music exceeds

the amount that they can correctly analyse just from looking at the numbers, then Financial

Music can serve a useful purpose. On top of this, if the music provides a quicker way to analyse

accounts than traditional methods, then we have found a real-world use for Financial Music.

For example, an investment portfolio manager could batch convert a series of accounts to

music, and then listen to the tracks on their iPod whilst out jogging during their lunch break.

When returning to their office, they can then choose which accounts to investigate further.

Therefore, the main purpose Financial Music could serve is to help filter out the worst invest-

ment propositions.

Finally, It is my hope that the development of Financial Music idea will continue.

66

Appendices

I

Appendix A: Test Results

II

Soar Slump Boom Plunge Grow Slide Consistent

Acc 1 Sequential 1 3 0 0 9 0 2

Acc 2 Sequential 2 3 1 0 4 0 3

Acc 3 Sequential 2 3 0 0 8 2 2

Acc 4 Sequential 3 2 0 2 2 4 2

Acc 5 Sequential 2 3 1 5 0 1 3

Acc 6 Sequential 0 1 0 3 2 2 3

Acc 1 Parallel 0 5 0 2 1 3 2

Acc 2 Parallel 1 2 1 0 3 1 5

Acc 3 Parallel 0 0 0 0 6 1 4

Acc 4 Parallel 3 0 2 2 2 2 1

Acc 5 Parallel 2 0 3 1 2 1 3

Acc 6 Parallel 0 3 1 6 0 3 0

Acc 1 Piano 3 1 1 0 7 2 2

Acc 2 Piano 0 0 0 0 2 4 7

Acc 3 Piano 1 3 0 0 2 2 4

Acc 4 Piano 0 2 1 1 1 7 1

Acc 5 Piano 0 3 0 1 0 3 4

Acc 6 Piano 0 3 1 2 0 6 1

Acc 1 Strings 7 1 1 0 4 2 1

Acc 2 Strings 2 2 0 0 6 0 3

Acc 3 Strings 1 2 0 0 4 2 4

Acc 4 Strings 0 5 0 0 2 4 3

Acc 5 Strings 0 6 0 1 0 5 1

Acc 6 Strings 0 1 1 6 0 3 0

Figure 8.1: Sheet 1 of the results.

III

Listens NOTUSE Musicality Highest Average

1 2.181818182 3.818181818 Sequential 4.2 3.7

1.636364 2.727272727 3.272727273 Parallel 3.4 2.9

1.090909 2.545454545 3.454545455 Piano 3.7 3.5

1.454545 2.727272727 3.272727273 Strings 4.1 3.6

1.181818 1.818181818 4.181818182

1.454545 2 4

1.454545 3.181818182 2.818181818

2.090909 3.272727273 2.727272727

1.909091 3.272727273 2.727272727

1.909091 3 3

1.545455 2.636363636 3.363636364

1.818182 3.090909091 2.909090909

1.090909 2.272727273 3.727272727

1.272727 2.727272727 3.272727273

1.272727 2.818181818 3.181818182

1.090909 2.545454545 3.454545455

1.181818 2.545454545 3.454545455

1.272727 2.363636364 3.636363636

1.181818 2.272727273 3.727272727

1.181818 1.909090909 4.090909091

1.636364 2.363636364 3.636363636

1.272727 2.454545455 3.545454545

1.090909 2.727272727 3.272727273

1.090909 2.727272727 3.272727273

Figure 8.2: Sheet 2 of the results.

IV

Lowest

3.3

2.7

3.2

3.3

Figure 8.3: Sheet 3 of the results.

V

Appendix B: Interfaces

In this section, ways that account data can be imported into the Financial Music software will
be explored. An ideal outcome would be that accounts can be imported directly from a website
using an API, RSS feed, or other XML based protocol. However, other options will also be
considered.

A User Interface

The most basic way of having the program attain account information would be to provide a
simple user interface.

This interface would consist of fields which can be filled in, and a button to submit their
contents for analysis.

This kind of interface, whilst crude, would provide a very nice way to test the software.
Values could be tweaked and altered on the fly to generate music. Feedback would be instant,
providing a quick mental picture of what kind of data produces what kind of music.

Local Sources

My second reader suggested to me that I use CSV as a commonly used format for importing
accounts. This would allow for the easy importing of accounts stored in spreadsheet format
(figure: 8.4).

The system I have implemented requires that two years worth of accounts be set up in
individual spreadsheets. These spreadsheets consist of two rows; the top row contains the
headings, and the bottom row contains the numerical values.

The importing procedure runs checks to ensure that both spreadsheets have the same number
of columns in the first two rows as each other, and the headings in both spreadsheets are
identical. These two clauses provide reasonable assurance that the two spreadsheets are from
the same template.

Internet Sources

The primary candidate for sourcing account information is Google Finance, which has recently
launched a localised UK version of this service1. Google Gadgets provides a JavaScript API for
accessing data from Google Finance2 , but due to licensing restrictions, Google have not opened
up this API for use on any other platform3. Yahoo Finance suffers from a similar restriction,
and will only allow the manual generation of HTML as a badge that can be placed on a web
log (blog) or website4. It also does not provide the complete balance sheet that is needed.

A Workaround

The option I’m considering is the inclusion of a JavaScript, which can be added as a book-
marklet (a small script or applet stored as a browser bookmark) in a web browser. This
JavaScript would be able to scan a web page for specific elements (known as data scraping),
and extract them (figure: 8.5). This can be done by accessing elements of the document ob-
ject model (DOM). Then, the user views a companys account on Google Finance. They then
select the bookmarklet, which runs the JavaScript. The JavaScript could pass the relevant data

1http://finance.google.co.uk, Google Finance UK, 01/02/2008
2http://code.google.com/apis/gadgets/docs/finance.html, Financial Gadgets, 01/02/2008
3http://googlefinanceblog.blogspot.com/2007/10/api-gadgets-and-tabs-oh-my.html, 01/02/2008
4http://finance.yahoo.com/badges, 01/02/2008

VI

Figure 8.4: Importing CSV files into the Java application.

to another page containing Financial Music as a Java applet5. This would allow an account
to be played with a single click. (The idea of disguising a JavaScript as a bookmark is not a
new one, as it is used by Google to automate the adding of RSS feeds to Google Reader, and
also by tinyurl.com to minimise the URL of the currently viewed web page)

There are limitations to this compromise: (a) This is all be dependent on Google not
changing the setup of their web pages; otherwise the script may no longer function. (b) The
account information to be extracted is chosen by the JavaScript. Therefore, if we wish to use
different account attributes, we need to alter both the JavaScript and the Java Applet to be
synchronised with each other.

In Practice

The reality of the situation, is that Google Finance isn’t set up for easy data extraction (in
an ideal situation, the relevant HTML elements would be nicely tagged with the ID element).
What we do know from looking at the HTML source, is that the value for an attribute is located
directly after its label. Therefore, we need to search for the name of the account attribute we
want to extract. Once this is done, the next item of data should be the value that we need to

5http://www.devdaily.com/java/edu/pj/pj010003/pj010003.shtml, 01/02/2008

VII

Figure 8.5: Flow of account data from Google Finance to the Java applet.

extract.
The Java applet should also have a default state, whereby if no information is passed to it

via its containing web page, it will allow the user to enter account information manually.

VIII

Appendix C: Evalutaion Results and Supplementary Graphs

Figure 8.6: A graph showing how many times on average testers listened to each output se-
quence.

IX

Figure 8.7: A graph showing the average musicality score between 1 and 5 that testers gave
each output sequence.

X

Appendix D: Questionnaire

In this section, I have included the questionnaires that were used by the expert and the testers
to provide feedback for the evaluation. These questionnaires were provided to the testers as
Microsoft Word templates. The boxes could be ticked directly, and the music sequences were
embedded in the document. Once the questionnaires were filled out, they could simply be saved
under a different file name, and were then archived for later analysis.

XI

1

Financial Music

- Expert Evaluation –

Hi there, and thanks for taking the time to help me evaluate my dissertation project. Please

take the time to read the Background and Instructions before starting.

Background

Financial Music is software which generates music from financial accounts. The aim is that

you can tell whether a company is making money just from the music; there’s no need to

look at the numbers in the accounts.

In order to evaluate whether the music derived from accounts presents an accurate picture

of the account’s actual meaning, it is necessary to have an expert inspect each account and

give their analysis.

This analysis will be used as a baseline to compare with the results of other testers who will

be listening to the music.

To keep things simple, accounts will be presented as follows:

1. Only the balance sheet will be given.

2. You may assume that the amounts shown are in multiples of millions of US Dollars.

3. The name of the company is kept hidden.

4. There will be 15 accounts to analyse.

Instructions

1. First, fill out the preliminary information on the next page.

2. You’ll answer questions by ticking boxes like this: . To tick a box, just click it. To un-

tick it if you change your mind, click it again.

3. The balance sheet for two subsequent years will be shown. Look at these with an eye to

the perceived changes over the course of the year.

4. Answer the questions for each account you look at.

5. If you want to take a break, then you can simply save this document and come back to it

later.

6. When you’re done, be sure to save this file and exit Microsoft Word.

7. Finally, please e-mail this file to danieldemby@googlemail.com.

Figure 8.8: Page 1 of the expert’s questionnaire.

XII

2

- Preliminary Information -

Please rate your understanding of account mechanics from 1 (experienced) to 5 (novice)

1 > 2 > 3 > 4 > 5 >

Would you like to be informed of the results of the testing?

Yes > No >

Figure 8.9: Page 2 of the expert’s questionnaire.

XIII

3

- Account 1 –

Please choose one or more words that you think represent the account:

Soar >

Slump >

Boom >

Plunge >

Grow >

Slide >

Consistent >

Do you think this company is doing well enough to invest money in?

Yes > No > Unsure >

Please type any useful comments in the box below:

Current Assets Total Assets Current Liabilities Total Liabilities Total Equity

Last Year 14509 17205 6443 7221 9984

This Year 21956 25347 9299 10815 14532

Figure 8.10: Page 3 of the expert’s questionnaire. Future pages continue in the same fashion.

XIV

1

Financial Music

- Music Evaluation –

Hi there, and thanks for taking the time to help me evaluate my dissertation project. This

questionnaire should take around 20 minutes to complete. Please take the time to read the

Background and Instructions before starting.

Background

Financial Music is software which generates music from financial accounts. The aim is that

you can tell whether a company is making money just from the music; there’s no need to

look at the numbers in the accounts.

Different techniques have been used to generate the music you’re about to listen to.

Remember that the music is generated by a computer, so its important that you don’t have

any preconceptions about what you’re about to hear.

Instructions

1. First, fill out the preliminary information on the next page.

2. You’ll answer questions by ticking boxes like this: .

a. To tick a box, double click it and select “checked” under “default value”.

b. To un-tick a box, double click it and select “not checked” under “default value”.

3. To listen to a tune, double-click the blue ‘play’ icon at the top of each box.

4. Listen to each tune as many times as you like. If you want to take a break, then you can

simply save this document and come back to it later.

5. Answer the questions for each tune you listen to.

6. When you’re done, be sure to save this file and exit Microsoft Word.

7. Finally, please e-mail this file back to me at danieldemby@googlemail.com.

- Note that all information you provide is anonymous -

- You can opt out of this questionnaire any time you l ike -

Figure 8.11: Page 1 of the tester’s questionnaire.

XV

2

- Preliminary Information -

Please rate your musical background from 1 (experienced) to 5 (novice)

1 > 2 > 3 > 4 > 5 >

Would you like to be informed of the results of the testing?

Yes > No >

You’re almost ready to begin the questionnaire. There are 24 “tunes” to listen to.

Please make sure that the volume on your computer is turned up

- Tune 1 –

Wave Sound

Double Click the icon above to play the tune

How many times did you listen to the tune?

1 > 2 > 3 > More than three >

Please choose one or more words that you think represent the account:

Soar >

Slump >

Boom >

Plunge >

Grow >

Slide >

Consistent >

Do you think this company is doing well enough to invest money in?

Yes > No > Unsure >

How musical did the tune sound? 1 > 2 > 3 > 4 > 5 >

Figure 8.12: Page 2 of the tester’s questionnaire. Future pages continue in the same fashion.

XVI

Appendix E: User Guide

Welcome to the user guide. Here you will learn how to operate Financial Music.

System Requirements

Before beginning, you will need to ensure you have Java 1.6 and Jython 2.2.1 installed. Java
can be obtained from www.sun.com and Jython can be obtained from www.jython.org

File Formats

Financial Music expects the account information to be in CSV (Comma Seperated Value) files.
These can be opened or generated with a spreadsheet package such as Microsoft Excel.

Compiling Financial Music

To prepare Financial Music for operation, you will need to open a command line console. Once
this is done, navigate to the directory containing Financial music and type: java *.java. This
will perform the compilation.

Music Generation

Before generating the music, you will need to make sure that you have two subsequent years’
balance sheets in two separate CSV files.

To generate music for the Signal Mapping implementation, type the following at the com-
mand line: jython Mapping.py year1 year2. Likewise, to generate music for the L-System
Music Generation implementation, type: jython LSS.py year1 year2. In both instances,
replace year1 and year2 with the appropriate file names.

Playing the Music

Once the music is generated, you can hear it by typing the following at the command line: java
MusicReader.

Changing Program Settings

To alter the settings used to generate the music, open your favourite text editor and choose
‘open file’. Navigate to the Financial Music directory, and open settings.py. Within, you will
find instructions on how to change these settings.

XVII

Appendix F: Financial Genome Example

Full Genome

16464 : [’Boom’, [’Descending’, ’NULL’, ’Chord’]]
4200 : [’Plunge’, [’Descending’, ’Minor’, ’Scale’]]
49392 : [’Boom’, [’Ascending’, ’NULL’, ’Chord’]]
3430 : [’Slump’, [’NULL’, ’Major’, ’Chord’]]
360 : [’Plunge’, [’Ascending’, ’Major’, ’NULL’]]
82320 : [’Boom’, [’Descending’, ’Major’, ’Chord’]]
8400 : [’Boom’, [’Descending’, ’Minor’, ’Scale’]]
350 : [’Slump’, [’NULL’, ’Minor’, ’Scale’]]
6860 : [’Soar’, [’NULL’, ’Major’, ’Chord’]]
12600 : [’Plunge’, [’Ascending’, ’Minor’, ’Scale’]]
720 : [’Boom’, [’Ascending’, ’Major’, ’NULL’]]
336 : [’Boom’, [’Descending’, ’NULL’, ’Scale’]]
10290 : [’Slump’, [’Descending’, ’Major’, ’Chord’]]
1470 : [’Slump’, [’Descending’, ’Major’, ’Crescendo’]]
700 : [’Soar’, [’NULL’, ’Minor’, ’Scale’]]
13720 : [’Plunge’, [’NULL’, ’Major’, ’Chord’]]
246960 : [’Boom’, [’Ascending’, ’Major’, ’Chord’]]
25200 : [’Boom’, [’Ascending’, ’Minor’, ’Scale’]]
4900 : [’Soar’, [’NULL’, ’Minor’, ’Crescendo’]]
686 : [’Slump’, [’NULL’, ’NULL’, ’Chord’]]
300 : [’Soar’, [’Descending’, ’Minor’, ’NULL’]]
17150 : [’Slump’, [’NULL’, ’Minor’, ’Chord’]]
294 : [’Slump’, [’Descending’, ’NULL’, ’Crescendo’]]
29400 : [’Plunge’, [’Descending’, ’Minor’, ’Crescendo’]]
4116 : [’Soar’, [’Descending’, ’NULL’, ’Chord’]]
1050 : [’Slump’, [’Descending’, ’Minor’, ’Scale’]]
20580 : [’Soar’, [’Descending’, ’Major’, ’Chord’]]
280 : [’Plunge’, [’NULL’, ’Major’, ’Scale’]]
11760 : [’Boom’, [’Descending’, ’Major’, ’Crescendo’]]
1800 : [’Plunge’, [’Ascending’, ’Minor’, ’NULL’]]
2940 : [’Soar’, [’Descending’, ’Major’, ’Crescendo’]]
411600 : [’Boom’, [’Descending’, ’Minor’, ’Chord’]]
102900 : [’Soar’, [’Descending’, ’Minor’, ’Chord’]]
252 : [’Soar’, [’Ascending’, ’NULL’, ’Scale’]]
1400 : [’Plunge’, [’NULL’, ’Minor’, ’Scale’]]
630 : [’Slump’, [’Ascending’, ’Major’, ’Scale’]]
27440 : [’Boom’, [’NULL’, ’Major’, ’Chord’]]
1008 : [’Boom’, [’Ascending’, ’NULL’, ’Scale’]]
240 : [’Boom’, [’Descending’, ’Major’, ’NULL’]]
1764 : [’Soar’, [’Ascending’, ’NULL’, ’Crescendo’]]
30870 : [’Slump’, [’Ascending’, ’Major’, ’Chord’]]
9800 : [’Plunge’, [’NULL’, ’Minor’, ’Crescendo’]]
1372 : [’Soar’, [’NULL’, ’NULL’, ’Chord’]]
2520 : [’Plunge’, [’Ascending’, ’Major’, ’Scale’]]
176400 : [’Boom’, [’Ascending’, ’Minor’, ’Crescendo’]]
22050 : [’Slump’, [’Ascending’, ’Minor’, ’Crescendo’]]

XVIII

600 : [’Plunge’, [’Descending’, ’Minor’, ’NULL’]]
980 : [’Soar’, [’NULL’, ’Major’, ’Crescendo’]]
34300 : [’Soar’, [’NULL’, ’Minor’, ’Chord’]]
210 : [’Slump’, [’Descending’, ’Major’, ’Scale’]]
588 : [’Soar’, [’Descending’, ’NULL’, ’Crescendo’]]
58800 : [’Boom’, [’Descending’, ’Minor’, ’Crescendo’]]
200 : [’Plunge’, [’NULL’, ’Minor’, ’NULL’]]
4410 : [’Slump’, [’Ascending’, ’Major’, ’Crescendo’]]
196 : [’Soar’, [’NULL’, ’NULL’, ’Crescendo’]]
8232 : [’Plunge’, [’Descending’, ’NULL’, ’Chord’]]
2100 : [’Soar’, [’Descending’, ’Minor’, ’Scale’]]
24696 : [’Plunge’, [’Ascending’, ’NULL’, ’Chord’]]
180 : [’Soar’, [’Ascending’, ’Major’, ’NULL’]]
41160 : [’Plunge’, [’Descending’, ’Major’, ’Chord’]]
560 : [’Boom’, [’NULL’, ’Major’, ’Scale’]]
6300 : [’Soar’, [’Ascending’, ’Minor’, ’Scale’]]
168 : [’Plunge’, [’Descending’, ’NULL’, ’Scale’]]
7056 : [’Boom’, [’Ascending’, ’NULL’, ’Crescendo’]]
123480 : [’Plunge’, [’Ascending’, ’Major’, ’Chord’]]
3600 : [’Boom’, [’Ascending’, ’Minor’, ’NULL’]]
2450 : [’Slump’, [’NULL’, ’Minor’, ’Crescendo’]]
150 : [’Slump’, [’Descending’, ’Minor’, ’NULL’]]
1680 : [’Boom’, [’Descending’, ’Major’, ’Scale’]]
14700 : [’Soar’, [’Descending’, ’Minor’, ’Crescendo’]]
144 : [’Boom’, [’Ascending’, ’NULL’, ’NULL’]]
2058 : [’Slump’, [’Descending’, ’NULL’, ’Chord’]]
140 : [’Soar’, [’NULL’, ’Major’, ’Scale’]]
5880 : [’Plunge’, [’Descending’, ’Major’, ’Crescendo’]]
900 : [’Soar’, [’Ascending’, ’Minor’, ’NULL’]]
205800 : [’Plunge’, [’Descending’, ’Minor’, ’Chord’]]
51450 : [’Slump’, [’Descending’, ’Minor’, ’Chord’]]
126 : [’Slump’, [’Ascending’, ’NULL’, ’Scale’]]
5488 : [’Boom’, [’NULL’, ’NULL’, ’Chord’]]
504 : [’Plunge’, [’Ascending’, ’NULL’, ’Scale’]]
120 : [’Plunge’, [’Descending’, ’Major’, ’NULL’]]
2800 : [’Boom’, [’NULL’, ’Minor’, ’Scale’]]
882 : [’Slump’, [’Ascending’, ’NULL’, ’Crescendo’]]
112 : [’Boom’, [’NULL’, ’NULL’, ’Scale’]]
1260 : [’Soar’, [’Ascending’, ’Major’, ’Scale’]]
88200 : [’Plunge’, [’Ascending’, ’Minor’, ’Crescendo’]]
490 : [’Slump’, [’NULL’, ’Major’, ’Crescendo’]]
100 : [’Soar’, [’NULL’, ’Minor’, ’NULL’]]
98 : [’Slump’, [’NULL’, ’NULL’, ’Crescendo’]]
12348 : [’Soar’, [’Ascending’, ’NULL’, ’Chord’]]
90 : [’Slump’, [’Ascending’, ’Major’, ’NULL’]]
3920 : [’Boom’, [’NULL’, ’Major’, ’Crescendo’]]
137200 : [’Boom’, [’NULL’, ’Minor’, ’Chord’]]
3150 : [’Slump’, [’Ascending’, ’Minor’, ’Scale’]]
84 : [’Soar’, [’Descending’, ’NULL’, ’Scale’]]

XIX

3528 : [’Plunge’, [’Ascending’, ’NULL’, ’Crescendo’]]
80 : [’Boom’, [’NULL’, ’Major’, ’NULL’]]
61740 : [’Soar’, [’Ascending’, ’Major’, ’Chord’]]
840 : [’Plunge’, [’Descending’, ’Major’, ’Scale’]]
7350 : [’Slump’, [’Descending’, ’Minor’, ’Crescendo’]]
72 : [’Plunge’, [’Ascending’, ’NULL’, ’NULL’]]
70 : [’Slump’, [’NULL’, ’Major’, ’Scale’]]
450 : [’Slump’, [’Ascending’, ’Minor’, ’NULL’]]
19600 : [’Boom’, [’NULL’, ’Minor’, ’Crescendo’]]
2744 : [’Plunge’, [’NULL’, ’NULL’, ’Chord’]]
5040 : [’Boom’, [’Ascending’, ’Major’, ’Scale’]]
60 : [’Soar’, [’Descending’, ’Major’, ’NULL’]]
56 : [’Plunge’, [’NULL’, ’NULL’, ’Scale’]]
44100 : [’Soar’, [’Ascending’, ’Minor’, ’Crescendo’]]
2352 : [’Boom’, [’Descending’, ’NULL’, ’Crescendo’]]
1200 : [’Boom’, [’Descending’, ’Minor’, ’NULL’]]
50 : [’Slump’, [’NULL’, ’Minor’, ’NULL’]]
48 : [’Boom’, [’Descending’, ’NULL’, ’NULL’]]
6174 : [’Slump’, [’Ascending’, ’NULL’, ’Chord’]]
1960 : [’Plunge’, [’NULL’, ’Major’, ’Crescendo’]]
35280 : [’Boom’, [’Ascending’, ’Major’, ’Crescendo’]]
68600 : [’Plunge’, [’NULL’, ’Minor’, ’Chord’]]
42 : [’Slump’, [’Descending’, ’NULL’, ’Scale’]]
40 : [’Plunge’, [’NULL’, ’Major’, ’NULL’]]
420 : [’Soar’, [’Descending’, ’Major’, ’Scale’]]
36 : [’Soar’, [’Ascending’, ’NULL’, ’NULL’]]
30 : [’Slump’, [’Descending’, ’Major’, ’NULL’]]
28 : [’Soar’, [’NULL’, ’NULL’, ’Scale’]]
1176 : [’Plunge’, [’Descending’, ’NULL’, ’Crescendo’]]
24 : [’Plunge’, [’Descending’, ’NULL’, ’NULL’]]
17640 : [’Plunge’, [’Ascending’, ’Major’, ’Crescendo’]]
20 : [’Soar’, [’NULL’, ’Major’, ’NULL’]]
18 : [’Slump’, [’Ascending’, ’NULL’, ’NULL’]]
784 : [’Boom’, [’NULL’, ’NULL’, ’Crescendo’]]
400 : [’Boom’, [’NULL’, ’Minor’, ’NULL’]]
16 : [’Boom’, [’NULL’, ’NULL’, ’NULL’]]
14 : [’Slump’, [’NULL’, ’NULL’, ’Scale’]]
12 : [’Soar’, [’Descending’, ’NULL’, ’NULL’]]
8820 : [’Soar’, [’Ascending’, ’Major’, ’Crescendo’]]
10 : [’Slump’, [’NULL’, ’Major’, ’NULL’]]
392 : [’Plunge’, [’NULL’, ’NULL’, ’Crescendo’]]
1234800 : [’Boom’, [’Ascending’, ’Minor’, ’Chord’]]
8 : [’Plunge’, [’NULL’, ’NULL’, ’NULL’]]
6 : [’Slump’, [’Descending’, ’NULL’, ’NULL’]]
4 : [’Soar’, [’NULL’, ’NULL’, ’NULL’]]
617400 : [’Plunge’, [’Ascending’, ’Minor’, ’Chord’]]
2 : [’Slump’, [’NULL’, ’NULL’, ’NULL’]]
308700 : [’Soar’, [’Ascending’, ’Minor’, ’Chord’]]
154350 : [’Slump’, [’Ascending’, ’Minor’, ’Chord’]]

XX

Vailid Genes

58800 : [’Boom’, [’Descending’, ’Minor’, ’Crescendo’]]
2940 : [’Soar’, [’Descending’, ’Major’, ’Crescendo’]]
5880 : [’Plunge’, [’Descending’, ’Major’, ’Crescendo’]]
8820 : [’Soar’, [’Ascending’, ’Major’, ’Crescendo’]]
176400 : [’Boom’, [’Ascending’, ’Minor’, ’Crescendo’]]
27440 : [’Boom’, [’NULL’, ’Major’, ’Chord’]]
840 : [’Plunge’, [’Descending’, ’Major’, ’Scale’]]
11760 : [’Boom’, [’Descending’, ’Major’, ’Crescendo’]]
14700 : [’Soar’, [’Descending’, ’Minor’, ’Crescendo’]]
17640 : [’Plunge’, [’Ascending’, ’Major’, ’Crescendo’]]
1680 : [’Boom’, [’Descending’, ’Major’, ’Scale’]]
12600 : [’Plunge’, [’Ascending’, ’Minor’, ’Scale’]]
630 : [’Slump’, [’Ascending’, ’Major’, ’Scale’]]
2520 : [’Plunge’, [’Ascending’, ’Major’, ’Scale’]]
17150 : [’Slump’, [’NULL’, ’Minor’, ’Chord’]]
1470 : [’Slump’, [’Descending’, ’Major’, ’Crescendo’]]
29400 : [’Plunge’, [’Descending’, ’Minor’, ’Crescendo’]]
420 : [’Soar’, [’Descending’, ’Major’, ’Scale’]]
88200 : [’Plunge’, [’Ascending’, ’Minor’, ’Crescendo’]]
8400 : [’Boom’, [’Descending’, ’Minor’, ’Scale’]]
4410 : [’Slump’, [’Ascending’, ’Major’, ’Crescendo’]]
13720 : [’Plunge’, [’NULL’, ’Major’, ’Chord’]]
35280 : [’Boom’, [’Ascending’, ’Major’, ’Crescendo’]]
7350 : [’Slump’, [’Descending’, ’Minor’, ’Crescendo’]]
6300 : [’Soar’, [’Ascending’, ’Minor’, ’Scale’]]
25200 : [’Boom’, [’Ascending’, ’Minor’, ’Scale’]]
1260 : [’Soar’, [’Ascending’, ’Major’, ’Scale’]]
137200 : [’Boom’, [’NULL’, ’Minor’, ’Chord’]]
44100 : [’Soar’, [’Ascending’, ’Minor’, ’Crescendo’]]
4200 : [’Plunge’, [’Descending’, ’Minor’, ’Scale’]]
210 : [’Slump’, [’Descending’, ’Major’, ’Scale’]]
6860 : [’Soar’, [’NULL’, ’Major’, ’Chord’]]
3150 : [’Slump’, [’Ascending’, ’Minor’, ’Scale’]]
68600 : [’Plunge’, [’NULL’, ’Minor’, ’Chord’]]
22050 : [’Slump’, [’Ascending’, ’Minor’, ’Crescendo’]]
2100 : [’Soar’, [’Descending’, ’Minor’, ’Scale’]]
3430 : [’Slump’, [’NULL’, ’Major’, ’Chord’]]
5040 : [’Boom’, [’Ascending’, ’Major’, ’Scale’]]
1050 : [’Slump’, [’Descending’, ’Minor’, ’Scale’]]
34300 : [’Soar’, [’NULL’, ’Minor’, ’Chord’]]
40 out of 144 genes are valid.

XXI

Appendix G: Progress Log

This log details the progress of my dissertation through its final few weeks. The purpose of the
log is to provide evidence of the work that has applied to the task, just in case the worse should
happen (such as all the departmental servers melting at the same time as my laptop explodes,
setting fire to all printed documents in the vicinity).

I think its fair to say that as Deliverables 1 & 2 are now a matter of record. These in
themselves provide adequate evidence of work achieved over the earlier sections of the project.

(Each day’s entries were written as I was working, so the tenses may fluctuate between past,
present and future!)

XXII

